These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Label-free capacitive DNA sensor using immobilized pyrrolidinyl PNA probe: effect of the length and terminating head group of the blocking thiols. Thipmanee O; Samanman S; Sankoh S; Numnuam A; Limbut W; Kanatharana P; Vilaivan T; Thavarungkul P Biosens Bioelectron; 2012; 38(1):430-5. PubMed ID: 22770826 [TBL] [Abstract][Full Text] [Related]
9. Chemical binding of pyrrolidinyl peptide nucleic acid (acpcPNA-T9) probe with AuNPs toward label-free monitoring of miRNA-21: A novel biosensing platform for biomedical analysis and POC diagnostics. Fathi N; Saadati A; Hasanzadeh M; Samiei M J Mol Recognit; 2021 Aug; 34(8):e2893. PubMed ID: 33822429 [TBL] [Abstract][Full Text] [Related]
10. Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique. Ananthanawat C; Vilaivan T; Hoven VP; Su X Biosens Bioelectron; 2010 Jan; 25(5):1064-9. PubMed ID: 19864125 [TBL] [Abstract][Full Text] [Related]
11. Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer. Reisberg S; Dang LA; Nguyen QA; Piro B; Noel V; Nielsen PE; Le LA; Pham MC Talanta; 2008 Jun; 76(1):206-10. PubMed ID: 18585264 [TBL] [Abstract][Full Text] [Related]
12. Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications. Vilaivan T Acc Chem Res; 2015 Jun; 48(6):1645-56. PubMed ID: 26022340 [TBL] [Abstract][Full Text] [Related]
13. PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal. Zhu B; Travas-Sejdic J Analyst; 2018 Feb; 143(3):687-694. PubMed ID: 29297913 [TBL] [Abstract][Full Text] [Related]
14. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe. Laopa PS; Vilaivan T; Hoven VP Analyst; 2013 Jan; 138(1):269-77. PubMed ID: 23125969 [TBL] [Abstract][Full Text] [Related]
15. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Prabhakar N; Arora K; Arya SK; Solanki PR; Iwamoto M; Singh H; Malhotra BD Analyst; 2008 Nov; 133(11):1587-92. PubMed ID: 18936837 [TBL] [Abstract][Full Text] [Related]
16. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Yang J; Yang T; Feng Y; Jiao K Anal Biochem; 2007 Jun; 365(1):24-30. PubMed ID: 17420003 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Torati SR; Reddy V; Yoon SS; Kim C Biosens Bioelectron; 2016 Apr; 78():483-488. PubMed ID: 26657592 [TBL] [Abstract][Full Text] [Related]
18. Direct Electrochemical DNA Sensor based on a new redox oligomer modified with ferrocene and carboxylic acid: Application to the detection of Mycobacterium tuberculosis mutant strain. Bizid S; Blili S; Mlika R; Haj Said A; Korri-Youssoufi H Anal Chim Acta; 2017 Nov; 994():10-18. PubMed ID: 29126464 [TBL] [Abstract][Full Text] [Related]
19. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Benvidi A; Rajabzadeh N; Mazloum-Ardakani M; Heidari MM; Mulchandani A Biosens Bioelectron; 2014 Aug; 58():145-52. PubMed ID: 24632459 [TBL] [Abstract][Full Text] [Related]
20. A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands. Mills DM; Martin CP; Armas SM; Calvo-Marzal P; Kolpashchikov DM; Chumbimuni-Torres KY Biosens Bioelectron; 2018 Jun; 109():35-42. PubMed ID: 29524915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]