BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 30442390)

  • 1. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection.
    Teengam P; Siangproh W; Tuantranont A; Vilaivan T; Chailapakul O; Henry CS
    Anal Chim Acta; 2018 Dec; 1044():102-109. PubMed ID: 30442390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes.
    Jampasa S; Wonsawat W; Rodthongkum N; Siangproh W; Yanatatsaneejit P; Vilaivan T; Chailapakul O
    Biosens Bioelectron; 2014 Apr; 54():428-34. PubMed ID: 24300785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus.
    Teengam P; Siangproh W; Tuantranont A; Henry CS; Vilaivan T; Chailapakul O
    Anal Chim Acta; 2017 Feb; 952():32-40. PubMed ID: 28010840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.
    Teengam P; Siangproh W; Tuantranont A; Vilaivan T; Chailapakul O; Henry CS
    Anal Chem; 2017 May; 89(10):5428-5435. PubMed ID: 28394582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.
    Kongpeth J; Jampasa S; Chaumpluk P; Chailapakul O; Vilaivan T
    Talanta; 2016; 146():318-25. PubMed ID: 26695270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection.
    Teengam P; Nisab N; Chuaypen N; Tangkijvanich P; Vilaivan T; Chailapakul O
    Biosens Bioelectron; 2021 Oct; 189():113381. PubMed ID: 34090155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor.
    Kangkamano T; Numnuam A; Limbut W; Kanatharana P; Vilaivan T; Thavarungkul P
    Biosens Bioelectron; 2018 Apr; 102():217-225. PubMed ID: 29149687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free capacitive DNA sensor using immobilized pyrrolidinyl PNA probe: effect of the length and terminating head group of the blocking thiols.
    Thipmanee O; Samanman S; Sankoh S; Numnuam A; Limbut W; Kanatharana P; Vilaivan T; Thavarungkul P
    Biosens Bioelectron; 2012; 38(1):430-5. PubMed ID: 22770826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical binding of pyrrolidinyl peptide nucleic acid (acpcPNA-T9) probe with AuNPs toward label-free monitoring of miRNA-21: A novel biosensing platform for biomedical analysis and POC diagnostics.
    Fathi N; Saadati A; Hasanzadeh M; Samiei M
    J Mol Recognit; 2021 Aug; 34(8):e2893. PubMed ID: 33822429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique.
    Ananthanawat C; Vilaivan T; Hoven VP; Su X
    Biosens Bioelectron; 2010 Jan; 25(5):1064-9. PubMed ID: 19864125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer.
    Reisberg S; Dang LA; Nguyen QA; Piro B; Noel V; Nielsen PE; Le LA; Pham MC
    Talanta; 2008 Jun; 76(1):206-10. PubMed ID: 18585264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications.
    Vilaivan T
    Acc Chem Res; 2015 Jun; 48(6):1645-56. PubMed ID: 26022340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal.
    Zhu B; Travas-Sejdic J
    Analyst; 2018 Feb; 143(3):687-694. PubMed ID: 29297913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.
    Laopa PS; Vilaivan T; Hoven VP
    Analyst; 2013 Jan; 138(1):269-77. PubMed ID: 23125969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance.
    Prabhakar N; Arora K; Arya SK; Solanki PR; Iwamoto M; Singh H; Malhotra BD
    Analyst; 2008 Nov; 133(11):1587-92. PubMed ID: 18936837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment.
    Yang J; Yang T; Feng Y; Jiao K
    Anal Biochem; 2007 Jun; 365(1):24-30. PubMed ID: 17420003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.
    Torati SR; Reddy V; Yoon SS; Kim C
    Biosens Bioelectron; 2016 Apr; 78():483-488. PubMed ID: 26657592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Electrochemical DNA Sensor based on a new redox oligomer modified with ferrocene and carboxylic acid: Application to the detection of Mycobacterium tuberculosis mutant strain.
    Bizid S; Blili S; Mlika R; Haj Said A; Korri-Youssoufi H
    Anal Chim Acta; 2017 Nov; 994():10-18. PubMed ID: 29126464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.
    Benvidi A; Rajabzadeh N; Mazloum-Ardakani M; Heidari MM; Mulchandani A
    Biosens Bioelectron; 2014 Aug; 58():145-52. PubMed ID: 24632459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands.
    Mills DM; Martin CP; Armas SM; Calvo-Marzal P; Kolpashchikov DM; Chumbimuni-Torres KY
    Biosens Bioelectron; 2018 Jun; 109():35-42. PubMed ID: 29524915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.