These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 30442391)

  • 1. Multiplex quantification of metals in airborne particulate matter via smartphone and paper-based microfluidics.
    Sun H; Jia Y; Dong H; Fan L; Zheng J
    Anal Chim Acta; 2018 Dec; 1044():110-118. PubMed ID: 30442391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide nanosheets coupled with paper microfluidics for enhanced on-site airborne trace metal detection.
    Sun H; Jia Y; Dong H; Fan L
    Microsyst Nanoeng; 2019; 5():4. PubMed ID: 31057931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial varying profiling of air PM constituents using paper-based microfluidics.
    Jia Y; Wu W; Zheng J; Ni Z; Sun H
    Biomicrofluidics; 2019 Sep; 13(5):054103. PubMed ID: 31558921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portable detection of trace metals in airborne particulates and sediments
    Jia Y; Dong H; Zheng J; Sun H
    Biomicrofluidics; 2017 Nov; 11(6):064101. PubMed ID: 29152029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed paper analytical device for quantification of metals using distance-based detection.
    Cate DM; Noblitt SD; Volckens J; Henry CS
    Lab Chip; 2015 Jul; 15(13):2808-18. PubMed ID: 26009988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer paper-based device for colorimetric and electrochemical quantification of metals.
    Rattanarat P; Dungchai W; Cate D; Volckens J; Chailapakul O; Henry CS
    Anal Chem; 2014 Apr; 86(7):3555-62. PubMed ID: 24576180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace elemental analysis of airborne particulate matter using dynamic reaction cell inductively coupled plasma-mass spectrometry: application to monitoring episodic industrial emission events.
    Danadurai KS; Chellam S; Lee CT; Fraser MP
    Anal Chim Acta; 2011 Feb; 686(1-2):40-9. PubMed ID: 21237306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation of eleven elements by chemical bonding from airborne particulate matter collected in an industrial city in Argentina.
    Fujiwara F; Dos Santos M; Marrero J; Polla G; Gómez D; Dawidowski L; Smichowski P
    J Environ Monit; 2006 Sep; 8(9):913-22. PubMed ID: 16951751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: a review.
    Mukhtar A; Limbeck A
    Anal Chim Acta; 2013 Apr; 774():11-25. PubMed ID: 23567112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain.
    Singh DK; Gupta T
    Sci Total Environ; 2016 Apr; 550():80-94. PubMed ID: 26808399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic paper-based analytical device for particulate metals.
    Mentele MM; Cunningham J; Koehler K; Volckens J; Henry CS
    Anal Chem; 2012 May; 84(10):4474-80. PubMed ID: 22489881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line dynamic extraction system hyphenated to inductively coupled plasma optical emission spectrometry for automatic determination of oral bioaccessible trace metal fractions in airborne particulate matter.
    Mohr V; Miró M; Limbeck A
    Anal Bioanal Chem; 2017 Apr; 409(10):2747-2756. PubMed ID: 28188349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain).
    Arruti A; Fernández-Olmo I; Irabien A
    J Environ Monit; 2010 Jul; 12(7):1451-8. PubMed ID: 20517581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Extractions and Toxicity Potential of Trace Metals Absorbed into Airborne Particles in an Urban Atmosphere of Southwestern Nigeria.
    Olumayede EG; Ediagbonya TF
    ScientificWorldJournal; 2018; 2018():6852165. PubMed ID: 29686588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and source identification of airborne trace metals in Singapore.
    Balasubramanian R; Qian WB
    J Environ Monit; 2004 Oct; 6(10):813-8. PubMed ID: 15480495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan.
    Shah MH; Shaheen N
    J Hazard Mater; 2007 Aug; 147(3):759-67. PubMed ID: 17320287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition of absolute and relative airborne metals on eggshells: a field study.
    Subpiramaniyam S; Kaliannan T; Piruthiviraj P
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2313-2319. PubMed ID: 29119497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient air quality of Lucknow City (India) during use of fireworks on Diwali Festival.
    Barman SC; Singh R; Negi MP; Bhargava SK
    Environ Monit Assess; 2008 Feb; 137(1-3):495-504. PubMed ID: 17562206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.