BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30442721)

  • 1. Structure of the sensory domain of McpX from
    Shrestha M; Compton KK; Mancl JM; Webb BA; Brown AM; Scharf BE; Schubot FD
    Biochem J; 2018 Dec; 475(24):3949-3962. PubMed ID: 30442721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.
    Webb BA; Karl Compton K; Castañeda Saldaña R; Arapov TD; Keith Ray W; Helm RF; Scharf BE
    Mol Microbiol; 2017 Jan; 103(2):333-346. PubMed ID: 27748981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. McpT, a Broad-Range Carboxylate Chemoreceptor in Sinorhizobium meliloti.
    Baaziz H; Compton KK; Hildreth SB; Helm RF; Scharf BE
    J Bacteriol; 2021 Aug; 203(17):e0021621. PubMed ID: 34124939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sinorhizobium meliloti Chemoreceptor McpV Senses Short-Chain Carboxylates via Direct Binding.
    Compton KK; Hildreth SB; Helm RF; Scharf BE
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201781
    [No Abstract]   [Full Text] [Related]  

  • 5. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.
    Zatakia HM; Arapov TD; Meier VM; Scharf BE
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29263102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti.
    Meier VM; Muschler P; Scharf BE
    J Bacteriol; 2007 Mar; 189(5):1816-26. PubMed ID: 17189365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing.
    Webb BA; Hildreth S; Helm RF; Scharf BE
    Appl Environ Microbiol; 2014 Jun; 80(11):3404-15. PubMed ID: 24657863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural analysis of the periplasmic domain of Sinorhizobium meliloti chemoreceptor McpZ reveals a novel fold and suggests a complex mechanism of transmembrane signaling.
    Salar S; Ball NE; Baaziz H; Nix JC; Sobe RC; Compton KK; Zhulin IB; Brown AM; Scharf BE; Schubot FD
    Proteins; 2023 Oct; 91(10):1394-1406. PubMed ID: 37213073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates.
    Webb BA; Helm RF; Scharf BE
    Mol Plant Microbe Interact; 2016 Mar; 29(3):231-9. PubMed ID: 26713349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular localization of predicted transmembrane and soluble chemoreceptors in Sinorhizobium meliloti.
    Meier VM; Scharf BE
    J Bacteriol; 2009 Sep; 191(18):5724-33. PubMed ID: 19617359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sinorhizobium meliloti Chemotaxis to Multiple Amino Acids Is Mediated by the Chemoreceptor McpU.
    Webb BA; Compton KK; Del Campo JSM; Taylor D; Sobrado P; Scharf BE
    Mol Plant Microbe Interact; 2017 Oct; 30(10):770-777. PubMed ID: 28745538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmed Proteolysis of Chemotaxis Proteins in Sinorhizobium meliloti: Features in the C-Terminal Region Control McpU Degradation.
    Arapov TD; Kim J; Cronin RM; Pahima M; Scharf BE
    J Bacteriol; 2020 Aug; 202(17):. PubMed ID: 32571966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine.
    Horn C; Sohn-Bösser L; Breed J; Welte W; Schmitt L; Bremer E
    J Mol Biol; 2006 Mar; 357(2):592-606. PubMed ID: 16445940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular Stoichiometry of Chemotaxis Proteins in
    Arapov TD; Saldaña RC; Sebastian AL; Ray WK; Helm RF; Scharf BE
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32393521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds.
    Chen C; Malek AA; Wargo MJ; Hogan DA; Beattie GA
    Mol Microbiol; 2010 Jan; 75(1):29-45. PubMed ID: 19919675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Schiefner A; Holtmann G; Diederichs K; Welte W; Bremer E
    J Biol Chem; 2004 Nov; 279(46):48270-81. PubMed ID: 15308642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain.
    Zhou YF; Nan B; Nan J; Ma Q; Panjikar S; Liang YH; Wang Y; Su XD
    J Mol Biol; 2008 Oct; 383(1):49-61. PubMed ID: 18725229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa.
    Wippel K; Long SR
    J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti.
    Chen S; White CE; diCenzo GC; Zhang Y; Stogios PJ; Savchenko A; Finan TM
    J Bacteriol; 2016 Feb; 198(7):1171-81. PubMed ID: 26833407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation.
    Boscari A; Van de Sype G; Le Rudulier D; Mandon K
    Mol Plant Microbe Interact; 2006 Aug; 19(8):896-903. PubMed ID: 16903355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.