BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30442890)

  • 1. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition.
    Saiz-Lopez A; Sitkiewicz SP; Roca-Sanjuán D; Oliva-Enrich JM; Dávalos JZ; Notario R; Jiskra M; Xu Y; Wang F; Thackray CP; Sunderland EM; Jacob DJ; Travnikov O; Cuevas CA; Acuña AU; Rivero D; Plane JMC; Kinnison DE; Sonke JE
    Nat Commun; 2018 Nov; 9(1):4796. PubMed ID: 30442890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.
    Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE
    Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere.
    Saiz-Lopez A; Travnikov O; Sonke JE; Thackray CP; Jacob DJ; Carmona-García J; Francés-Monerris A; Roca-Sanjuán D; Acuña AU; Dávalos JZ; Cuevas CA; Jiskra M; Wang F; Bieser J; Plane JMC; Francisco JS
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30949-30956. PubMed ID: 33229529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental rainwater divalent mercury speciation and photoreduction rates in the presence of halides and organic carbon.
    Yang X; Jiskra M; Sonke JE
    Sci Total Environ; 2019 Dec; 697():133821. PubMed ID: 32380590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury.
    Shah V; Jacob DJ; Thackray CP; Wang X; Sunderland EM; Dibble TS; Saiz-Lopez A; Černušák I; Kellö V; Castro PJ; Wu R; Wang C
    Environ Sci Technol; 2021 Nov; 55(21):14445-14456. PubMed ID: 34724789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-Phase Photolysis of Hg(I) Radical Species: A New Atmospheric Mercury Reduction Process.
    Saiz-Lopez A; Acuña AU; Trabelsi T; Carmona-García J; Dávalos JZ; Rivero D; Cuevas CA; Kinnison DE; Sitkiewicz SP; Roca-Sanjuán D; Francisco JS
    J Am Chem Soc; 2019 Jun; 141(22):8698-8702. PubMed ID: 31117649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury.
    Francés-Monerris A; Carmona-García J; Acuña AU; Dávalos JZ; Cuevas CA; Kinnison DE; Francisco JS; Saiz-Lopez A; Roca-Sanjuán D
    Angew Chem Int Ed Engl; 2020 May; 59(19):7605-7610. PubMed ID: 31833158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odd isotope deficits in atmospheric Hg measured in lichens.
    Carignan J; Estrade N; Sonke JE; Donard OF
    Environ Sci Technol; 2009 Aug; 43(15):5660-4. PubMed ID: 19731659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreduction and origin of dissolved and particulate mercury in cloud water: Insights from stable mercury isotopes.
    Zhen J; Li T; Cai H; Nie X; He S; Meng M; Wang Y; Chen J
    J Hazard Mater; 2024 Aug; 474():134654. PubMed ID: 38810583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of anthropogenic emissions and meteorology on mercury deposition over lake vs land surface in upstate New York.
    Ye Z; Mao H; Driscoll CT
    Ecotoxicology; 2020 Dec; 29(10):1590-1601. PubMed ID: 31586287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass-Independent Fractionation of Even and Odd Mercury Isotopes during Atmospheric Mercury Redox Reactions.
    Fu X; Jiskra M; Yang X; Marusczak N; Enrico M; Chmeleff J; Heimbürger-Boavida LE; Gheusi F; Sonke JE
    Environ Sci Technol; 2021 Jul; 55(14):10164-10174. PubMed ID: 34213316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios.
    Corbitt ES; Jacob DJ; Holmes CD; Streets DG; Sunderland EM
    Environ Sci Technol; 2011 Dec; 45(24):10477-84. PubMed ID: 22050654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric mercury in the Canadian Arctic. Part I: a review of recent field measurements.
    Steffen A; Lehnherr I; Cole A; Ariya P; Dastoor A; Durnford D; Kirk J; Pilote M
    Sci Total Environ; 2015 Mar; 509-510():3-15. PubMed ID: 25497576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation.
    Gencarelli CN; De Simone F; Hedgecock IM; Sprovieri F; Pirrone N
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4095-109. PubMed ID: 24170496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.
    Zhang Y; Jacob DJ; Horowitz HM; Chen L; Amos HM; Krabbenhoft DP; Slemr F; St Louis VL; Sunderland EM
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):526-31. PubMed ID: 26729866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.
    Obrist D; Agnan Y; Jiskra M; Olson CL; Colegrove DP; Hueber J; Moore CW; Sonke JE; Helmig D
    Nature; 2017 Jul; 547(7662):201-204. PubMed ID: 28703199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moss and lichen biomonitoring of atmospheric mercury: A review.
    Bargagli R
    Sci Total Environ; 2016 Dec; 572():216-231. PubMed ID: 27501421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury stable isotopes constrain atmospheric sources to the ocean.
    Jiskra M; Heimbürger-Boavida LE; Desgranges MM; Petrova MV; Dufour A; Ferreira-Araujo B; Masbou J; Chmeleff J; Thyssen M; Point D; Sonke JE
    Nature; 2021 Sep; 597(7878):678-682. PubMed ID: 34588669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition.
    Enrico M; Roux GL; Marusczak N; Heimbürger LE; Claustres A; Fu X; Sun R; Sonke JE
    Environ Sci Technol; 2016 Mar; 50(5):2405-12. PubMed ID: 26849121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changed mercury speciation in clouds driven by changing cloud water chemistry and impacts on photoreduction: Field evidence at Mt. Tai in eastern China.
    Zhen J; Li T; Xu X; Du P; Song Y; Nie X; Liu X; Liu H; Bi Y; Wang X; Xue L; Wang Y
    Water Res; 2023 Oct; 244():120402. PubMed ID: 37572460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.