These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30442949)

  • 21. Interactions that influence the binding of synthetic heparan sulfate based disaccharides to fibroblast growth factor-2.
    Li YC; Ho IH; Ku CC; Zhong YQ; Hu YP; Chen ZG; Chen CY; Lin WC; Zulueta MM; Hung SC; Lin MG; Wang CC; Hsiao CD
    ACS Chem Biol; 2014 Aug; 9(8):1712-7. PubMed ID: 24959968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force-driven growth of intercellular junctions.
    Tehrani M; Sarvestani AS
    J Theor Biol; 2017 May; 421():101-111. PubMed ID: 28377302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing time-dependent mechanical behaviors of catch bonds based on two-state models.
    Chen X; Mao Z; Chen B
    Sci Rep; 2015 Jan; 5():7868. PubMed ID: 25598078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sanfilippo disease type D: deficiency of N-acetylglucosamine-6-sulfate sulfatase required for heparan sulfate degradation.
    Kresse H; Paschke E; von Figura K; Gilberg W; Fuchs W
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6822-6. PubMed ID: 6450420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysosomal degradation of heparin and heparan sulphate.
    Freeman C; Hopwood J
    Adv Exp Med Biol; 1992; 313():121-34. PubMed ID: 1442257
    [No Abstract]   [Full Text] [Related]  

  • 26. Molecular organization of the interferon gamma-binding domain in heparan sulphate.
    Lortat-Jacob H; Turnbull JE; Grimaud JA
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):497-505. PubMed ID: 7654188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of catch bonds involving cell-adhesion molecules.
    Marshall BT; Long M; Piper JW; Yago T; McEver RP; Zhu C
    Nature; 2003 May; 423(6936):190-3. PubMed ID: 12736689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activities of sulfatases for the degradation of acidic glycosaminoglycans in cultured skin fibroblasts from two siblings with multiple sulfatase deficiency.
    Minami R; Fujibayashi S; Tachi N; Wagatsuma K; Nakao T; Ikeno T; Tsugawa S; Sukegawa K; Orii T
    Clin Chim Acta; 1983 Apr; 129(2):175-80. PubMed ID: 6851160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Good is Jarzynski's Equality for Computer-Aided Drug Design?
    Ho K; Truong DT; Li MS
    J Phys Chem B; 2020 Jul; 124(26):5338-5349. PubMed ID: 32484689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic competition between catch and slip bonds in selectins bound to ligands.
    Barsegov V; Thirumalai D
    J Phys Chem B; 2006 Dec; 110(51):26403-12. PubMed ID: 17181300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling.
    Ai X; Do AT; Lozynska O; Kusche-Gullberg M; Lindahl U; Emerson CP
    J Cell Biol; 2003 Jul; 162(2):341-51. PubMed ID: 12860968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems.
    Ytreberg FM; Zuckerman DM
    J Comput Chem; 2004 Nov; 25(14):1749-59. PubMed ID: 15362132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the Binding Affinity by Jarzynski's Nonequilibrium Binding Free Energy and Rupture Time.
    Truong DT; Li MS
    J Phys Chem B; 2018 May; 122(17):4693-4699. PubMed ID: 29630379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Sulfs: expression, purification, and substrate specificity.
    Uchimura K
    Methods Mol Biol; 2015; 1229():401-12. PubMed ID: 25325968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenomenological and microscopic theories for catch bonds.
    Chakrabarti S; Hinczewski M; Thirumalai D
    J Struct Biol; 2017 Jan; 197(1):50-56. PubMed ID: 27046010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the interaction between adeno-associated virus and heparan sulfate using atomic force microscopy.
    Negishi A; Chen J; McCarty DM; Samulski RJ; Liu J; Superfine R
    Glycobiology; 2004 Nov; 14(11):969-77. PubMed ID: 15215232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution structure of CXCL13 and heparan sulfate binding show that GAG binding site and cellular signalling rely on distinct domains.
    Monneau YR; Luo L; Sankaranarayanan NV; Nagarajan B; Vivès RR; Baleux F; Desai UR; Arenzana-Seidedos F; Lortat-Jacob H
    Open Biol; 2017 Oct; 7(10):. PubMed ID: 29070611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2006 Mar; 45(9):3086-94. PubMed ID: 16503664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compositional profiling of heparin/heparan sulfate using mass spectrometry: assay for specificity of a novel extracellular human endosulfatase.
    Saad OM; Ebel H; Uchimura K; Rosen SD; Bertozzi CR; Leary JA
    Glycobiology; 2005 Aug; 15(8):818-26. PubMed ID: 15843596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential of mean force calculations of ligand binding to ion channels from Jarzynski's equality and umbrella sampling.
    Baştuğ T; Chen PC; Patra SM; Kuyucak S
    J Chem Phys; 2008 Apr; 128(15):155104. PubMed ID: 18433285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.