These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30442991)

  • 1. Tracing whale myoglobin evolution by resurrecting ancient proteins.
    Isogai Y; Imamura H; Nakae S; Sumi T; Takahashi KI; Nakagawa T; Tsuneshige A; Shirai T
    Sci Rep; 2018 Nov; 8(1):16883. PubMed ID: 30442991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common and unique strategies of myoglobin evolution for deep-sea adaptation of diving mammals.
    Isogai Y; Imamura H; Nakae S; Sumi T; Takahashi KI; Shirai T
    iScience; 2021 Aug; 24(8):102920. PubMed ID: 34430810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation.
    Holm J; Dasmeh P; Kepp KP
    Biochim Biophys Acta; 2016 Jul; 1864(7):825-34. PubMed ID: 27068539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional properties of myoglobins from five whale species with different diving capacities.
    Helbo S; Fago A
    J Exp Biol; 2012 Oct; 215(Pt 19):3403-10. PubMed ID: 22693033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positively selected sites in cetacean myoglobins contribute to protein stability.
    Dasmeh P; Serohijos AW; Kepp KP; Shakhnovich EI
    PLoS Comput Biol; 2013; 9(3):e1002929. PubMed ID: 23505347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusually weak oxygen binding, physical properties, partial sequence, autoxidation rate and a potential phosphorylation site of beluga whale (Delphinapterus leucas) myoglobin.
    Stewart JM; Blakely JA; Karpowicz PA; Kalanxhi E; Thatcher BJ; Martin BM
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar; 137(3):401-12. PubMed ID: 15050527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated evolutionary rate of the myoglobin gene in long-diving whales.
    Nery MF; Arroyo JI; Opazo JC
    J Mol Evol; 2013 Jun; 76(6):380-7. PubMed ID: 23857304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cDNA-derived amino acid sequences of myoglobins from nine species of whales and dolphins.
    Iwanami K; Mita H; Yamamoto Y; Fujise Y; Yamada T; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Oct; 145(2):249-56. PubMed ID: 16962803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates.
    Arnason U; Gullberg A; Gretarsdottir S; Ursing B; Janke A
    J Mol Evol; 2000 Jun; 50(6):569-78. PubMed ID: 10835487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences.
    Milinkovitch MC; Ortí G; Meyer A
    Nature; 1993 Jan; 361(6410):346-8. PubMed ID: 8426652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants.
    Dasmeh P; Kepp KP
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Jan; 161(1):9-17. PubMed ID: 21903173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of urea transporters from the kidneys of baleen and toothed whales.
    Birukawa N; Ando H; Goto M; Kanda N; Pastene LA; Urano A
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Feb; 149(2):227-35. PubMed ID: 18032079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Protein Solubility in Macromolecular Crowding during Myoglobin Evolution.
    Isogai Y; Imamura H; Sumi T; Shirai T
    Biochemistry; 2022 Aug; 61(15):1543-1547. PubMed ID: 35674519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancient whale rhodopsin reconstructs dim-light vision over a major evolutionary transition: Implications for ancestral diving behavior.
    Dungan SZ; Chang BSW
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2118145119. PubMed ID: 35759662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rod monochromacy and the coevolution of cetacean retinal opsins.
    Meredith RW; Gatesy J; Emerling CA; York VM; Springer MS
    PLoS Genet; 2013 Apr; 9(4):e1003432. PubMed ID: 23637615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers.
    He K; Eastman TG; Czolacz H; Li S; Shinohara A; Kawada SI; Springer MS; Berenbrink M; Campbell KL
    Elife; 2021 Apr; 10():. PubMed ID: 33949308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Novel Evolution of the Sperm Whale Genome.
    Warren WC; Kuderna L; Alexander A; Catchen J; Pérez-Silva JG; López-Otín C; Quesada V; Minx P; Tomlinson C; Montague MJ; Farias FHG; Walter RB; Marques-Bonet T; Glenn T; Kieran TJ; Wise SS; Wise JP; Waterhouse RM; Wise JP
    Genome Biol Evol; 2017 Dec; 9(12):3260-3264. PubMed ID: 28985367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas.
    Joyce TW; Durban JW; Claridge DE; Dunn CA; Fearnbach H; Parsons KM; Andrews RD; Ballance LT
    PLoS One; 2017; 12(10):e0185113. PubMed ID: 29020021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wonky whales: the evolution of cranial asymmetry in cetaceans.
    Coombs EJ; Clavel J; Park T; Churchill M; Goswami A
    BMC Biol; 2020 Jul; 18(1):86. PubMed ID: 32646447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of myoglobin in the evolution of mammalian diving capacity - The August Krogh principle applied in molecular and evolutionary physiology.
    Berenbrink M
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Feb; 252():110843. PubMed ID: 33181325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.