These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 30443161)
1. Administration of CoCl An S; Zhou M; Li Z; Feng M; Cao G; Lu S; Liu L Int J Med Sci; 2018; 15(13):1423-1432. PubMed ID: 30443161 [TBL] [Abstract][Full Text] [Related]
2. Preconditioning and post-treatment with cobalt chloride in rat model of perinatal hypoxic-ischemic encephalopathy. Dai Y; Li W; Zhong M; Chen J; Liu Y; Cheng Q; Li T Brain Dev; 2014 Mar; 36(3):228-40. PubMed ID: 23694759 [TBL] [Abstract][Full Text] [Related]
3. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α). Hsieh YL; Chou LW; Chang PL; Yang CC; Kao MJ; Hong CZ J Comp Neurol; 2012 Sep; 520(13):2903-16. PubMed ID: 22351621 [TBL] [Abstract][Full Text] [Related]
4. HIF-1α Induced by Hypoxia Promotes Peripheral Nerve Injury Recovery Through Regulating Ferroptosis in DRG Neuron. An S; Shi J; Huang J; Li Z; Feng M; Cao G Mol Neurobiol; 2024 Sep; 61(9):6300-6311. PubMed ID: 38291291 [TBL] [Abstract][Full Text] [Related]
5. Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Qin J; Wang L; Sun Y; Sun X; Wen C; Shahmoradi M; Zhou Y Int J Mol Med; 2016 Feb; 37(2):493-500. PubMed ID: 26709397 [TBL] [Abstract][Full Text] [Related]
6. Activating Injury-Responsive Genes with Hypoxia Enhances Axon Regeneration through Neuronal HIF-1α. Cho Y; Shin JE; Ewan EE; Oh YM; Pita-Thomas W; Cavalli V Neuron; 2015 Nov; 88(4):720-34. PubMed ID: 26526390 [TBL] [Abstract][Full Text] [Related]
7. Carnosine improves functional recovery and structural regeneration after sciatic nerve crush injury in rats. Mirzakhani N; Farshid AA; Tamaddonfard E; Imani M; Erfanparast A; Noroozinia F Life Sci; 2018 Dec; 215():22-30. PubMed ID: 30391465 [TBL] [Abstract][Full Text] [Related]
8. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein. Mohamed AS; Hanafi NI; Sheikh Abdul Kadir SH; Md Noor J; Abdul Hamid Hasani N; Ab Rahim S; Siran R Cell Biochem Funct; 2017 Oct; 35(7):453-463. PubMed ID: 29027248 [TBL] [Abstract][Full Text] [Related]
9. Effect of oxytocin administration on nerve recovery in the rat sciatic nerve damage model. Gümüs B; Kuyucu E; Erbas O; Kazimoglu C; Oltulu F; Bora OA J Orthop Surg Res; 2015 Oct; 10():161. PubMed ID: 26466786 [TBL] [Abstract][Full Text] [Related]
10. Possible role of antioxidative capacity of (-)-epigallocatechin-3-gallate treatment in morphological and neurobehavioral recovery after sciatic nerve crush injury. Renno WM; Benov L; Khan KM J Neurosurg Spine; 2017 Nov; 27(5):593-613. PubMed ID: 28777065 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effects of NGF, CNTF and GDNF on functional recovery following sciatic nerve injury in rats. Chen J; Chu YF; Chen JM; Li BC Adv Med Sci; 2010; 55(1):32-42. PubMed ID: 20494870 [TBL] [Abstract][Full Text] [Related]
12. Is there a role for neurotrophic factors and their receptors in augmenting the neuroprotective effect of (-)-epigallocatechin-3-gallate treatment of sciatic nerve crush injury? Renno WM; Khan KM; Benov L Neuropharmacology; 2016 Mar; 102():1-20. PubMed ID: 26514400 [TBL] [Abstract][Full Text] [Related]
13. Synergistic lithium chloride and glial cell line-derived neurotrophic factor delivery for peripheral nerve repair in a rodent sciatic nerve injury model. Lin YC; Oh SJ; Marra KG Plast Reconstr Surg; 2013 Aug; 132(2):251e-262e. PubMed ID: 23897353 [TBL] [Abstract][Full Text] [Related]
14. Assisted peripheral nerve recovery by KMUP-1, an activator of large-conductance Ca(2+)-activated potassium channel, in a rat model of sciatic nerve crush injury. Chung CL; Tsai HP; Lee KS; Chen KI; Wu SC; Kuo YH; Winardi W; Chen IC; Kwan AL Acta Neurochir (Wien); 2012 Oct; 154(10):1773-9. PubMed ID: 22772399 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of nerve growth factor (NGF) treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. Moattari M; Kouchesfehani HM; Kaka G; Sadraie SH; Naghdi M J Craniomaxillofac Surg; 2018 Jun; 46(6):898-904. PubMed ID: 29716818 [TBL] [Abstract][Full Text] [Related]
17. Repair with collagen tubules linked with brain-derived neurotrophic factor and ciliary neurotrophic factor in a rat sciatic nerve injury model. Ho PR; Coan GM; Cheng ET; Niell C; Tarn DM; Zhou H; Sierra D; Terris DJ Arch Otolaryngol Head Neck Surg; 1998 Jul; 124(7):761-6. PubMed ID: 9677110 [TBL] [Abstract][Full Text] [Related]
18. CDP-choline modulates matrix metalloproteinases in rat sciatic injury. Gundogdu EB; Bekar A; Turkyilmaz M; Gumus A; Kafa IM; Cansev M J Surg Res; 2016 Feb; 200(2):655-63. PubMed ID: 26521098 [TBL] [Abstract][Full Text] [Related]
19. Adipose-derived stem cells modified by TWIST1 silencing accelerates rat sciatic nerve repair and functional recovery. Chen B; Wang L; Pan X; Jiang S; Hu Y Hum Cell; 2024 Sep; 37(5):1394-1404. PubMed ID: 38907140 [TBL] [Abstract][Full Text] [Related]
20. Tanshinone IIA attenuates nerve transection injury associated with nerve regeneration promotion in rats. Li M; Wang J; Ding L; Meng H; Wang F; Luo Z Neurosci Lett; 2017 Oct; 659():18-25. PubMed ID: 28859867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]