These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30443165)
1. Mechanical Properties and Porosity of Acrylic Cement Bone Loaded with Alendronate Powder. Qu GX; Ying ZM; Zhao CC; Yan SG; Cai XZ Int J Med Sci; 2018; 15(13):1458-1465. PubMed ID: 30443165 [TBL] [Abstract][Full Text] [Related]
2. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties. Slane J; Vivanco J; Meyer J; Ploeg HL; Squire M J Mech Behav Biomed Mater; 2014 Jan; 29():451-61. PubMed ID: 24211354 [TBL] [Abstract][Full Text] [Related]
3. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty. Robo C; Öhman-Mägi C; Persson C J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115 [TBL] [Abstract][Full Text] [Related]
4. Alendronate in bone cement: fatigue life degraded by liquid, not by powder. Lewis G; Janna S Clin Orthop Relat Res; 2006 Apr; 445():233-8. PubMed ID: 16446596 [TBL] [Abstract][Full Text] [Related]
5. Effect of a bisphosphonate, disodium pamidronate, on the quasi-static flexural properties of Palacos R acrylic bone cement. Zenios M; Nokes L; Galasko CS J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):322-6. PubMed ID: 15384075 [TBL] [Abstract][Full Text] [Related]
6. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty. Calvo-Fernández T; Parra J; Fernández-Gutiérrez M; Vázquez-Lasa B; López-Bravo A; Collía F; Pérez de la Cruz MA; San Román J Eur Cell Mater; 2010 Oct; 20():260-73. PubMed ID: 20925024 [TBL] [Abstract][Full Text] [Related]
8. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV. Lewis G; Janna S Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440 [TBL] [Abstract][Full Text] [Related]
9. [Effect of alendronate amount on the static mechanical properties of bone cement]. Song D; Ni J; Mao X; Ding M Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Feb; 39(2):178-84. PubMed ID: 24608392 [TBL] [Abstract][Full Text] [Related]
10. Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: effect of type of HA powder. Morejón L; Mendizábal AE; García-Menocal JA; Ginebra MP; Aparicio C; Mur FJ; Marsal M; Davidenko N; Ballesteros ME; Planell JA J Biomed Mater Res B Appl Biomater; 2005 Feb; 72(2):345-52. PubMed ID: 15529327 [TBL] [Abstract][Full Text] [Related]
11. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. Lewis G; Janna S; Bhattaram A Biomaterials; 2005 Jul; 26(20):4317-25. PubMed ID: 15683656 [TBL] [Abstract][Full Text] [Related]
12. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties. Frutos G; Pastor JY; Martínez N; Virto MR; Torrado S Acta Biomater; 2010 Mar; 6(3):804-11. PubMed ID: 19703595 [TBL] [Abstract][Full Text] [Related]
13. Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles. Slane J; Vivanco J; Ebenstein D; Squire M; Ploeg HL J Mech Behav Biomed Mater; 2014 Sep; 37():141-52. PubMed ID: 24911668 [TBL] [Abstract][Full Text] [Related]
14. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty. Ajaxon I; Persson C Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042 [TBL] [Abstract][Full Text] [Related]
15. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Kurtz SM; Villarraga ML; Zhao K; Edidin AA Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260 [TBL] [Abstract][Full Text] [Related]
16. Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement. Kim S; Baril C; Rudraraju S; Ploeg HL J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34286825 [TBL] [Abstract][Full Text] [Related]
17. Effect of sterilization method on properties of Palacos R acrylic bone cement. Lewis G; Mladsi S Biomaterials; 1998; 19(1-3):117-24. PubMed ID: 9678858 [TBL] [Abstract][Full Text] [Related]
18. In vivo behavior of acrylic bone cement in total hip arthroplasty. Ries MD; Young E; Al-Marashi L; Goldstein P; Hetherington A; Petrie T; Pruitt L Biomaterials; 2006 Jan; 27(2):256-61. PubMed ID: 16039712 [TBL] [Abstract][Full Text] [Related]
19. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: part II. Fatigue crack propagation. Vila MM; Ginebra MP; Gil FJ; Planell JA J Biomed Mater Res; 1999; 48(2):128-34. PubMed ID: 10331905 [TBL] [Abstract][Full Text] [Related]
20. Influence of mixing techniques on the physical properties of acrylic bone cement. Dunne NJ; Orr JF Biomaterials; 2001 Jul; 22(13):1819-26. PubMed ID: 11396886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]