These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 30443438)
1. Predicting Nodule Malignancy using a CNN Ensemble Approach. Paul R; Hall L; Goldgof D; Schabath M; Gillies R Proc Int Jt Conf Neural Netw; 2018 Jul; 2018():. PubMed ID: 30443438 [TBL] [Abstract][Full Text] [Related]
2. Predicting malignant nodules by fusing deep features with classical radiomics features. Paul R; Hawkins SH; Schabath MB; Gillies RJ; Hall LO; Goldgof DB J Med Imaging (Bellingham); 2018 Jan; 5(1):011021. PubMed ID: 29594181 [TBL] [Abstract][Full Text] [Related]
3. Hybrid models for lung nodule malignancy prediction utilizing convolutional neural network ensembles and clinical data. Paul R; Schabath MB; Gillies R; Hall LO; Goldgof DB J Med Imaging (Bellingham); 2020 Mar; 7(2):024502. PubMed ID: 32280729 [No Abstract] [Full Text] [Related]
4. Convolutional Neural Network ensembles for accurate lung nodule malignancy prediction 2 years in the future. Paul R; Schabath M; Gillies R; Hall L; Goldgof D Comput Biol Med; 2020 Jul; 122():103882. PubMed ID: 32658721 [TBL] [Abstract][Full Text] [Related]
5. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. Huang B; Sollee J; Luo YH; Reddy A; Zhong Z; Wu J; Mammarappallil J; Healey T; Cheng G; Azzoli C; Korogodsky D; Zhang P; Feng X; Li J; Yang L; Jiao Z; Bai HX EBioMedicine; 2022 Aug; 82():104127. PubMed ID: 35810561 [TBL] [Abstract][Full Text] [Related]
6. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images. Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712 [TBL] [Abstract][Full Text] [Related]
7. External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis. Garau N; Paganelli C; Summers P; Choi W; Alam S; Lu W; Fanciullo C; Bellomi M; Baroni G; Rampinelli C Med Phys; 2020 Sep; 47(9):4125-4136. PubMed ID: 32488865 [TBL] [Abstract][Full Text] [Related]
8. Lung cancer prediction by Deep Learning to identify benign lung nodules. Heuvelmans MA; van Ooijen PMA; Ather S; Silva CF; Han D; Heussel CP; Hickes W; Kauczor HU; Novotny P; Peschl H; Rook M; Rubtsov R; von Stackelberg O; Tsakok MT; Arteta C; Declerck J; Kadir T; Pickup L; Gleeson F; Oudkerk M Lung Cancer; 2021 Apr; 154():1-4. PubMed ID: 33556604 [TBL] [Abstract][Full Text] [Related]
9. A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images. Astaraki M; Yang G; Zakko Y; Toma-Dasu I; Smedby Ö; Wang C Front Oncol; 2021; 11():737368. PubMed ID: 34976794 [TBL] [Abstract][Full Text] [Related]
10. Identification of Benign and Malignant Lung Nodules in CT Images Based on Ensemble Learning Method. Xu Y; Wang S; Sun X; Yang Y; Fan J; Jin W; Li Y; Su F; Zhang W; Cui Q; Hu Y; Wang S; Zhang J; Chen C Interdiscip Sci; 2022 Mar; 14(1):130-140. PubMed ID: 34727340 [TBL] [Abstract][Full Text] [Related]
12. An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification. Huang YS; Wang TC; Huang SZ; Zhang J; Chen HM; Chang YC; Chang RF Comput Methods Programs Biomed; 2023 Feb; 229():107278. PubMed ID: 36463674 [TBL] [Abstract][Full Text] [Related]
13. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. Jung H; Kim B; Lee I; Lee J; Kang J BMC Med Imaging; 2018 Dec; 18(1):48. PubMed ID: 30509191 [TBL] [Abstract][Full Text] [Related]
14. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. Wang H; Zhao T; Li LC; Pan H; Liu W; Gao H; Han F; Wang Y; Qi Y; Liang Z J Xray Sci Technol; 2018; 26(2):171-187. PubMed ID: 29036877 [TBL] [Abstract][Full Text] [Related]
15. Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma. Paul R; Hawkins SH; Balagurunathan Y; Schabath MB; Gillies RJ; Hall LO; Goldgof DB Tomography; 2016 Dec; 2(4):388-395. PubMed ID: 28066809 [TBL] [Abstract][Full Text] [Related]
16. Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks. Redd TK; Prajna NV; Srinivasan M; Lalitha P; Krishnan T; Rajaraman R; Venugopal A; Acharya N; Seitzman GD; Lietman TM; Keenan JD; Campbell JP; Song X Ophthalmol Sci; 2022 Jun; 2(2):100119. PubMed ID: 36249698 [TBL] [Abstract][Full Text] [Related]
17. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Avanzo M; Gagliardi V; Stancanello J; Blanck O; Pirrone G; El Naqa I; Revelant A; Sartor G Med Phys; 2021 Oct; 48(10):6257-6269. PubMed ID: 34415574 [TBL] [Abstract][Full Text] [Related]
18. CAD system for lung nodule detection using deep learning with CNN. Manickavasagam R; Selvan S; Selvan M Med Biol Eng Comput; 2022 Jan; 60(1):221-228. PubMed ID: 34811644 [TBL] [Abstract][Full Text] [Related]
19. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
20. Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters. Liang L; Zhang H; Lei H; Zhou H; Wu Y; Shen J Technol Cancer Res Treat; 2022; 21():15330338221119748. PubMed ID: 36259167 [No Abstract] [Full Text] [Related] [Next] [New Search]