BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 30443895)

  • 1. Myosin-X is essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes.
    Uhl J; Gujarathi S; Waheed AA; Gordon A; Freed EO; Gousset K
    J Cell Commun Signal; 2019 Jun; 13(2):209-224. PubMed ID: 30443895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myo10 is a key regulator of TNT formation in neuronal cells.
    Gousset K; Marzo L; Commere PH; Zurzolo C
    J Cell Sci; 2013 Oct; 126(Pt 19):4424-35. PubMed ID: 23886947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Role of the Formation of Tunneling Nanotubes in HIV-1 Spread in Macrophages.
    Hashimoto M; Bhuyan F; Hiyoshi M; Noyori O; Nasser H; Miyazaki M; Saito T; Kondoh Y; Osada H; Kimura S; Hase K; Ohno H; Suzu S
    J Immunol; 2016 Feb; 196(4):1832-41. PubMed ID: 26773158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication.
    Jansens RJJ; Van den Broeck W; De Pelsmaeker S; Lamote JAS; Van Waesberghe C; Couck L; Favoreel HW
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28747498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.
    Wittig D; Wang X; Walter C; Gerdes HH; Funk RH; Roehlecke C
    PLoS One; 2012; 7(3):e33195. PubMed ID: 22457742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes.
    Osteikoetxea-Molnár A; Szabó-Meleg E; Tóth EA; Oszvald Á; Izsépi E; Kremlitzka M; Biri B; Nyitray L; Bozó T; Németh P; Kellermayer M; Nyitrai M; Matko J
    Cell Mol Life Sci; 2016 Dec; 73(23):4531-4545. PubMed ID: 27125884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Sáenz-de-Santa-María I; Henderson JM; Pepe A; Zurzolo C
    Curr Protoc; 2023 Nov; 3(11):e939. PubMed ID: 37994667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses.
    Panasiuk M; Rychłowski M; Derewońko N; Bieńkowska-Szewczyk K
    J Virol; 2018 May; 92(10):. PubMed ID: 29491165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes.
    Carter KP; Hanna S; Genna A; Lewis D; Segall JE; Cox D
    Cancer Rep (Hoboken); 2019 Dec; 2(6):e1213. PubMed ID: 32467880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin-X Silencing in the Trabecular Meshwork Suggests a Role for Tunneling Nanotubes in Outflow Regulation.
    Sun YY; Yang YF; Keller KE
    Invest Ophthalmol Vis Sci; 2019 Feb; 60(2):843-851. PubMed ID: 30807639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes.
    Zhu H; Xue C; Xu X; Guo Y; Li X; Lu J; Ju S; Wang Y; Cao Z; Gu X
    Cell Death Dis; 2016 Dec; 7(12):e2523. PubMed ID: 28005071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wiring through tunneling nanotubes--from electrical signals to organelle transfer.
    Abounit S; Zurzolo C
    J Cell Sci; 2012 Mar; 125(Pt 5):1089-98. PubMed ID: 22399801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging the Gap: Virus Long-Distance Spread via Tunneling Nanotubes.
    Jansens RJJ; Tishchenko A; Favoreel HW
    J Virol; 2020 Mar; 94(8):. PubMed ID: 32024778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte-macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS.
    Alessandrini L; Santarcangelo AC; Olivetta E; Ferrantelli F; d'Aloja P; Pugliese K; Pelosi E; Chelucci C; Mattia G; Peschle C; Verani P; Federico M
    J Gen Virol; 2000 Dec; 81(Pt 12):2905-2917. PubMed ID: 11086122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages.
    Souriant S; Balboa L; Dupont M; Pingris K; Kviatcovsky D; Cougoule C; Lastrucci C; Bah A; Gasser R; Poincloux R; Raynaud-Messina B; Al Saati T; Inwentarz S; Poggi S; Moraña EJ; González-Montaner P; Corti M; Lagane B; Vergne I; Allers C; Kaushal D; Kuroda MJ; Sasiain MDC; Neyrolles O; Maridonneau-Parini I; Lugo-Villarino G; Vérollet C
    Cell Rep; 2019 Mar; 26(13):3586-3599.e7. PubMed ID: 30917314
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Jahnke R; Matthiesen S; Zaeck LM; Finke S; Knittler MR
    Microbiol Spectr; 2022 Dec; 10(6):e0281722. PubMed ID: 36219107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1
    Bertacchi G; Posch W; Wilflingseder D
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms.
    Lotfi S; Nasser H; Noyori O; Hiyoshi M; Takeuchi H; Koyanagi Y; Suzu S
    Retrovirology; 2020 Jul; 17(1):20. PubMed ID: 32650782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifaceted roles of tunneling nanotubes in intercellular communication.
    Marzo L; Gousset K; Zurzolo C
    Front Physiol; 2012; 3():72. PubMed ID: 22514537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis of induction and formation of tunneling nanotubes.
    Kimura S; Hase K; Ohno H
    Cell Tissue Res; 2013 Apr; 352(1):67-76. PubMed ID: 23229356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.