These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3044403)

  • 1. Comparison of bone formed intramuscularly after transplantation of scapular and calvarial osteoblasts.
    Moskalewski S; Osiecka A; Malejczyk J
    Bone; 1988; 9(2):101-6. PubMed ID: 3044403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of bone formed in transplants of isolated scapular and vertebral osteoblasts.
    Moskalewski S; Hyc A; Osiecka A; Jakubicz D
    Folia Histochem Cytobiol; 1990; 28(1-2):35-41. PubMed ID: 2097181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural differences between bone formed intramuscularly following the transplantation of isolated calvarial bone cells or chondrocytes.
    Moskalewski S; Malejczyk J; Osiecka A
    Anat Embryol (Berl); 1986; 175(2):271-7. PubMed ID: 3548483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in shape of bone formed by isolated calvarial and scapular osteoblasts transplanted under various conditions.
    Moskalewski S; Osiecka A; Hyc A; Malejczyk J
    Folia Histochem Cytobiol; 1989; 27(1):25-33. PubMed ID: 2737347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in size of bone islands formed by isolated bone cells transplanted intramuscularly under various conditions.
    Moskalewski S; Dabrowski M; Hyc A
    Folia Histochem Cytobiol; 1991; 29(3):125-30. PubMed ID: 1794438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation by isolated calvarial osteoblasts in syngeneic and allogeneic transplants: light microscopic observations.
    Moskalewski S; Boonekamp PM; Scherft JP
    Am J Anat; 1983 Jun; 167(2):249-63. PubMed ID: 6351584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation?
    Moskalewski S; Malejczyk J
    Development; 1989 Nov; 107(3):473-80. PubMed ID: 2612374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microscopy of bone formed by syngeneic transplanted calvarial osteoblasts.
    Groot CG; Moskalewski S; Scherft JP; Boonekamp PM
    Cell Biol Int Rep; 1983 May; 7(5):322. PubMed ID: 6850861
    [No Abstract]   [Full Text] [Related]  

  • 9. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.
    Kitami M; Kaku M; Rocabado JM; Ida T; Akiba N; Uoshima K
    J Cell Physiol; 2016 Sep; 231(9):1974-82. PubMed ID: 26754153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblasts From Calvarial and Endochondral Bone Transplanted Intramuscularly Produce Bone Similar to that of their Origin.
    Moskalewski S; Malejczyk J; Osiecka-Iwan A; Hyc A
    J Bone Miner Res; 2022 Jun; 37(6):1209-1210. PubMed ID: 35340051
    [No Abstract]   [Full Text] [Related]  

  • 11. [Osteoneogenesis. Preliminary experimental study of the implantation of decalcified bone powder in human surgery].
    Bettex-Galland M
    Chir Pediatr; 1985; 26(3):167-74. PubMed ID: 2933172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro.
    Pedersen ME; Fortunati D; Nielsen M; Brorson SH; Lekva T; Nissen-Meyer LS; Gautvik VT; Shahdadfar A; Gautvik KM; Jemtland R
    Bone; 2008 Oct; 43(4):700-7. PubMed ID: 18620088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage formed by syngeneic rat chondrocytes in joint surface defects is rejected in animals sensitized with allogeneic chondrocytes: involvement of the synovial lining.
    Moskalewski S; Osiecka-Iwan A; Hyc A; Niderla J
    Arch Immunol Ther Exp (Warsz); 2005; 53(2):159-68. PubMed ID: 15928585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model.
    Sikavitsas VI; van den Dolder J; Bancroft GN; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2003 Dec; 67(3):944-51. PubMed ID: 14613243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.
    Colnot C
    J Bone Miner Res; 2009 Feb; 24(2):274-82. PubMed ID: 18847330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunosuppression and rejection of cartilage formed by allogeneic chondrocytes in rats.
    Osiecka-Iwan A; Hyc A; Moskalewski S
    Cell Transplant; 1999; 8(6):627-36. PubMed ID: 10701492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMP-2 gene transfection of bone marrow stromal cells to induce osteoblastic differentiation in a rat calvarial defect model.
    Hsieh MK; Wu CJ; Chen CC; Tsai TT; Niu CC; Wu SC; Lai PL
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():806-816. PubMed ID: 30033316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterotopic osteogenesis in porous ceramics induced by marrow cells.
    Ohgushi H; Goldberg VM; Caplan AI
    J Orthop Res; 1989; 7(4):568-78. PubMed ID: 2544711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of engineered bone tissue using a rotary three-dimensional culture system.
    Hidaka M; Su GN; Chen JK; Mukaisho K; Hattori T; Yamamoto G
    In Vitro Cell Dev Biol Anim; 2007 Feb; 43(2):49-58. PubMed ID: 17570019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.
    Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH
    Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.