These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30444312)

  • 1. Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review.
    Vaclavek T; Prikryl J; Foret F
    J Sep Sci; 2019 Jan; 42(1):445-457. PubMed ID: 30444312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review.
    Song Y; Zhang J; Li D
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Detection of Microparticles Using a Microfluidic Resistive Pulse Sensor Based on Bipolar Pulse-Width Multiplexing.
    Xu R; Ouyang L; Shaik R; Chen H; Zhang G; Zhe J
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis.
    Choi G; Murphy E; Guan W
    ACS Sens; 2019 Jul; 4(7):1957-1963. PubMed ID: 31264411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of particle dynamics in an orifice-electrode system. Application to counting and sizing by impedance measurement.
    Isèbe D; Nérin P
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):462-75. PubMed ID: 23349148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes.
    Zhong J; Liang M; Ai Y
    Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic resistive pulse sensing for characterization of extracellular vesicles.
    Calado MRC; Lage TC; André DAM; Calaza C; Marques C; Herrero C; Piteira J; Montelius L; Petrovykh DY; Diéguez L; Ainla A
    Lab Chip; 2024 Aug; 24(17):4028-4038. PubMed ID: 39051540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Evaluation of Microfluidic Resistive Pulse Sensing for Quantification and Sizing of Nanometer- and Micrometer-Sized Particles in Biopharmaceutical Products.
    Grabarek AD; Weinbuch D; Jiskoot W; Hawe A
    J Pharm Sci; 2019 Jan; 108(1):563-573. PubMed ID: 30176253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.
    Harrer S; Kim SC; Schieber C; Kannam S; Gunn N; Moore S; Scott D; Bathgate R; Skafidas S; Wagner JM
    Nanotechnology; 2015 May; 26(18):182502. PubMed ID: 25875197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Lab Chip; 2014 Nov; 14(22):4370-81. PubMed ID: 25231594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes.
    Sobahi N; Han A
    Biosens Bioelectron; 2020 Oct; 166():112458. PubMed ID: 32777724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistive Pulse Sensing on a Capillary-Assisted Microfluidic Platform for On-Site Single-Particle Analyses.
    Shimada T; Fujino K; Yasui T; Kaji N; Ueda Y; Fujii K; Yukawa H; Baba Y
    Anal Chem; 2023 Dec; 95(50):18335-18343. PubMed ID: 38064273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Analytical Differential Resistance Pulse System Relying on a Time Shift Signal Analysis-Applications in Coulter Counting.
    Birkin PR; Linfield S; Denuault G; Jones R; Youngs JJ; Wain E
    ACS Sens; 2019 Aug; 4(8):2190-2195. PubMed ID: 31290312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Living Cell in-Flow Detection Based on Microfluidic Chip and Compact Signal Processing Circuit.
    Quang LD; Bui TT; Hoang BA; Nhu CN; Thuy HTT; Jen CP; Duc TC
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1371-1380. PubMed ID: 33085615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.