These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 30444353)

  • 1. Exposure to Freeze-Thaw Conditions Increases Virulence of Pseudomonas aeruginosa to Drosophila melanogaster.
    Hakimzadeh A; Okshevsky M; Maisuria V; Déziel E; Tufenkji N
    Environ Sci Technol; 2018 Dec; 52(24):14180-14186. PubMed ID: 30444353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.
    Asadishad B; Olsson AL; Dusane DH; Ghoshal S; Tufenkji N
    Water Res; 2014 Jul; 58():239-47. PubMed ID: 24768703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cold climate and freeze-thaw on the survival, transport, and virulence of Yersinia enterocolitica.
    Asadishad B; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013 Dec; 47(24):14169-77. PubMed ID: 24283700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural freeze-thaw cycles may increase the risk associated with
    Rocard JM; Asadishad B; Samonte PRV; Ghoshal S; Tufenkji N
    Water Res X; 2018 Dec; 1():100005. PubMed ID: 31194033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Freeze-Thaw on a Midtemperate Soil Bacterial Community and the Correlation Network of Its Members.
    Juan Y; Jiang N; Tian L; Chen X; Sun W; Chen L
    Biomed Res Int; 2018; 2018():8412429. PubMed ID: 30050943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climatic variation and seed persistence: freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens.
    Connolly BM; Orrock JL
    Oecologia; 2015 Oct; 179(2):609-16. PubMed ID: 26078006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil Microbial Community Response Differently to the Frequency and Strength of Freeze-Thaw Events in a
    Liu M; Feng F; Cai T; Tang S
    Front Microbiol; 2020; 11():1164. PubMed ID: 32582103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa glutathione biosynthesis genes play multiple roles in stress protection, bacterial virulence and biofilm formation.
    Wongsaroj L; Saninjuk K; Romsang A; Duang-Nkern J; Trinachartvanit W; Vattanaviboon P; Mongkolsuk S
    PLoS One; 2018; 13(10):e0205815. PubMed ID: 30325949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas aeruginosa
    Van Laar TA; Esani S; Birges TJ; Hazen B; Thomas JM; Rawat M
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29669887
    [No Abstract]   [Full Text] [Related]  

  • 10. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms using Drosophila melanogaster.
    Fauvarque MO
    Cell Microbiol; 2014 Jun; 16(6):824-33. PubMed ID: 24628939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winter survival of microbial contaminants in soil: an in situ verification.
    Bucci A; Allocca V; Naclerio G; Capobianco G; Divino F; Fiorillo F; Celico F
    J Environ Sci (China); 2015 Jan; 27():131-8. PubMed ID: 25597671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fulvic acid and fulvic ions on Escherichia coli survival in river under repeated freeze-thaw cycles.
    Wang X; Zhang D; Chen W; Tao J; Xu M; Guo P
    Environ Pollut; 2019 Apr; 247():1100-1109. PubMed ID: 30823339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific.
    Dubern JF; Cigana C; De Simone M; Lazenby J; Juhas M; Schwager S; Bianconi I; Döring G; Eberl L; Williams P; Bragonzi A; Cámara M
    Environ Microbiol; 2015 Nov; 17(11):4379-93. PubMed ID: 25845292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-quorum Sensing and Anti-biofilm Activity of
    Singh VK; Mishra A; Jha B
    Front Cell Infect Microbiol; 2017; 7():337. PubMed ID: 28798903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa.
    Maisuria VB; Los Santos YL; Tufenkji N; Déziel E
    Sci Rep; 2016 Aug; 6():30169. PubMed ID: 27503003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-host approach to identify a transposon mutant of Pseudomonas aeruginosa LESB58 lacking full virulence.
    Gagné-Thivierge C; Kukavica-Ibrulj I; Filion G; Dekimpe V; Tan SGE; Vincent AT; Déziel É; Levesque RC; Charette SJ
    BMC Res Notes; 2018 Mar; 11(1):198. PubMed ID: 29580289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China.
    Ren J; Song C; Hou A; Song Y; Zhu X; Cagle GA
    Sci Total Environ; 2018 Jun; 625():782-791. PubMed ID: 29306166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection.
    Apidianakis Y; Rahme LG
    Nat Protoc; 2009; 4(9):1285-94. PubMed ID: 19680242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates.
    Vipin C; Mujeeburahiman M; Ashwini P; Arun AB; Rekha PD
    Lett Appl Microbiol; 2019 May; 68(5):464-471. PubMed ID: 30762887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.