These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30444370)

  • 1. Dynamics and Wetting Behavior of Core-Shell Soft Particles at a Fluid-Fluid Interface.
    Vasudevan SA; Rauh A; Kröger M; Karg M; Isa L
    Langmuir; 2018 Dec; 34(50):15370-15382. PubMed ID: 30444370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow and Core-Shell Microgels at Oil-Water Interfaces: Spreading of Soft Particles Reduces the Compressibility of the Monolayer.
    Geisel K; Rudov AA; Potemkin II; Richtering W
    Langmuir; 2015 Dec; 31(48):13145-54. PubMed ID: 26575794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable in Bulk and Aggregating at the Interface: Comparing Core-Shell Nanoparticles in Suspension and at Fluid Interfaces.
    Vasudevan SA; Rauh A; Barbera L; Karg M; Isa L
    Langmuir; 2018 Jan; 34(3):886-895. PubMed ID: 28753321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-
    Rey M; Fernandez-Rodriguez MA; Karg M; Isa L; Vogel N
    Acc Chem Res; 2020 Feb; 53(2):414-424. PubMed ID: 31940173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the 3D Conformation of Hard-Core Soft-Shell Particles Adsorbed at a Fluid Interface.
    Vialetto J; Camerin F; Ramakrishna SN; Zaccarelli E; Isa L
    Adv Sci (Weinh); 2023 Oct; 10(28):e2303404. PubMed ID: 37541434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers.
    Buchcic C; Tromp RH; Meinders MB; Cohen Stuart MA
    Soft Matter; 2017 Feb; 13(7):1326-1334. PubMed ID: 28074195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression of hard core-soft shell nanoparticles at liquid-liquid interfaces: influence of the shell thickness.
    Rauh A; Rey M; Barbera L; Zanini M; Karg M; Isa L
    Soft Matter; 2016 Dec; 13(1):158-169. PubMed ID: 27515818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale approach to the adsorption of core-shell nanoparticles at fluid interfaces.
    Nelson A; Wang D; Koynov K; Isa L
    Soft Matter; 2015 Jan; 11(1):118-29. PubMed ID: 25370362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Internal Architecture on the Assembly of Soft Particles at Fluid Interfaces.
    Vialetto J; Camerin F; Grillo F; Ramakrishna SN; Rovigatti L; Zaccarelli E; Isa L
    ACS Nano; 2021 Aug; 15(8):13105-13117. PubMed ID: 34328717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces.
    Yong X
    Langmuir; 2015 Oct; 31(42):11458-69. PubMed ID: 26439456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces.
    Gyulai G; Kiss É
    J Colloid Interface Sci; 2017 Aug; 500():9-19. PubMed ID: 28395164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.
    Rey M; Fernández-Rodríguez MÁ; Steinacher M; Scheidegger L; Geisel K; Richtering W; Squires TM; Isa L
    Soft Matter; 2016 Apr; 12(15):3545-57. PubMed ID: 26948023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial self-assembly of SiO
    Ickler M; Menath J; Holstein L; Rey M; Buzza DMA; Vogel N
    Soft Matter; 2022 Aug; 18(30):5585-5597. PubMed ID: 35849635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Assembly of Anisotropic Core-Shell and Hollow Microgels.
    Nickel AC; Rudov AA; Potemkin II; Crassous JJ; Richtering W
    Langmuir; 2022 Apr; 38(14):4351-4363. PubMed ID: 35349289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High interfacial activity of polymers "grafted through" functionalized iron oxide nanoparticle clusters.
    Foster LM; Worthen AJ; Foster EL; Dong J; Roach CM; Metaxas AE; Hardy CD; Larsen ES; Bollinger JA; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Sep; 30(34):10188-96. PubMed ID: 25111153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles.
    Gan D; Lyon LA
    J Am Chem Soc; 2001 Aug; 123(34):8203-9. PubMed ID: 11516270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of microgel architecture and oil polarity on stabilization of emulsions by stimuli-sensitive core-shell poly(N-isopropylacrylamide-co-methacrylic acid) microgels: Mickering versus Pickering behavior?
    Schmidt S; Liu T; Rütten S; Phan KH; Möller M; Richtering W
    Langmuir; 2011 Aug; 27(16):9801-6. PubMed ID: 21736380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Activity of Nonamphiphilic Particles in Fluid-Fluid Interfaces.
    Zhang Y; Wang S; Zhou J; Zhao R; Benz G; Tcheimou S; Meredith JC; Behrens SH
    Langmuir; 2017 May; 33(18):4511-4519. PubMed ID: 28422501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linking density and temperature effects on the self-assembly of SiO2-PNIPAAm core-shell particles at interfaces.
    Nazli KO; Pester CW; Konradi A; Böker A; van Rijn P
    Chemistry; 2013 Apr; 19(18):5586-94. PubMed ID: 23554025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.