These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30444419)

  • 1. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions.
    Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H
    Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble acceleration in the ablative Rayleigh-Taylor instability.
    Betti R; Sanz J
    Phys Rev Lett; 2006 Nov; 97(20):205002. PubMed ID: 17155687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.
    Martinez DA; Smalyuk VA; Kane JO; Casner A; Liberatore S; Masse LP
    Phys Rev Lett; 2015 May; 114(21):215004. PubMed ID: 26066443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers.
    Zhang H; Betti R; Gopalaswamy V; Yan R; Aluie H
    Phys Rev E; 2018 Jan; 97(1-1):011203. PubMed ID: 29448450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations.
    Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability.
    Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear theory of the ablative Rayleigh-Taylor instability.
    Sanz J; Ramírez J; Ramis R; Betti R; Town RP
    Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing.
    Cheng B; Glimm J; Sharp DH
    Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers.
    Goncharov VN
    Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble interaction model for hydrodynamic unstable mixing.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability.
    Sadot O; Smalyuk VA; Delettrez JA; Meyerhofer DD; Sangster TC; Betti R; Goncharov VN; Shvarts D
    Phys Rev Lett; 2005 Dec; 95(26):265001. PubMed ID: 16486364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability.
    Goncharov VN; Li D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046306. PubMed ID: 15903785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic stabilization of ablative Rayleigh-Taylor instability in the presence of a temporally modulated laser pulse.
    Zhao KG; Li ZY; Wang LF; Di ZH; Xue C; Zhang H; Wu JF; Ye WH; Zhou CT; Ding YK; Zhang WY; He XT
    Phys Rev E; 2024 Feb; 109(2-2):025213. PubMed ID: 38491640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability.
    Garnier J; Raviart PA; Cherfils-Clérouin C; Masse L
    Phys Rev Lett; 2003 May; 90(18):185003. PubMed ID: 12786013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimode Hydrodynamic Instability Growth of Preimposed Isolated Defects in Ablatively Driven Foils.
    Zulick C; Aglitskiy Y; Karasik M; Schmitt AJ; Velikovich AL; Obenschain SP
    Phys Rev Lett; 2020 Jul; 125(5):055001. PubMed ID: 32794887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface.
    Han L; Yuan J; Dong M; Fan Z
    Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K; Fukuda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution.
    Fan Z; Dong M
    Phys Rev E; 2020 Jun; 101(6-1):063103. PubMed ID: 32688480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetized ablative Rayleigh-Taylor instability in three dimensions.
    Walsh CA
    Phys Rev E; 2022 Feb; 105(2-2):025206. PubMed ID: 35291065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test of thermal transport models through dynamic overpressure stabilization of ablation-front perturbation growth in laser-driven CH foils.
    Gotchev OV; Goncharov VN; Knauer JP; Boehly TR; Collins TJ; Epstein R; Jaanimagi PA; Meyerhofer DD
    Phys Rev Lett; 2006 Mar; 96(11):115005. PubMed ID: 16605835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.