These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30444419)

  • 21. Nonlinear, single-mode, two-dimensional Rayleigh-Taylor instability in ideal media.
    Piriz AR; Cela JJL; Piriz SA; Tahir NA
    Phys Rev E; 2024 Aug; 110(2-2):025101. PubMed ID: 39294993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Late-time quadratic growth in single-mode Rayleigh-Taylor instability.
    Wei T; Livescu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016325. PubMed ID: 20365478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative modeling of bubble competition in Richtmyer-Meshkov instability.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017302. PubMed ID: 18764086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability.
    Abarzhi SI; Nishihara K; Rosner R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036310. PubMed ID: 16605654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New directions for Rayleigh-Taylor mixing.
    Glimm J; Sharp DH; Kaman T; Lim H
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120183. PubMed ID: 24146006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth.
    Ikegawa T; Nishihara K
    Phys Rev Lett; 2002 Sep; 89(11):115001. PubMed ID: 12225142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rayleigh-Taylor instability with complex acceleration history.
    Dimonte G; Ramaprabhu P; Andrews M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear Rayleigh-Taylor growth in converging geometry.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations.
    Zhou ZR; Zhang YS; Tian BL
    Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions.
    Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A
    Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the Rayleigh-Taylor instability on maximum reachable temperatures in laser-induced bubbles.
    Rechiman LM; Bonetto FJ; Rosselló JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):027301. PubMed ID: 23005890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution.
    Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension.
    Garnier J; Cherfils-Clérouin C; Holstein PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability.
    Masse L
    Phys Rev Lett; 2007 Jun; 98(24):245001. PubMed ID: 17677970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows.
    Xiao JX; Bai JS; Wang T
    Phys Rev E; 2016 Jul; 94(1-1):013112. PubMed ID: 27575222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio.
    Ramaprabhu P; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.