These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 30444501)
1. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Mei Z; An Q; Zhao FQ; Xu SY; Ju XH Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501 [TBL] [Abstract][Full Text] [Related]
2. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
3. Thermal decomposition mechanism of HMX/HTPB hybrid explosives studied by reactive molecular dynamics. Chen F; Li T; Zhao L; Guo G; Dong L; Mi F; Jia X; Ning R; Wang J; Cao D J Mol Model; 2024 Jun; 30(7):224. PubMed ID: 38907749 [TBL] [Abstract][Full Text] [Related]
4. The thermal decomposition process of Composition B by ReaxFF/lg force field. Meng J; Zhang S; Gou R; Chen Y; Li Y; Chen M; Li Z J Mol Model; 2020 Aug; 26(9):245. PubMed ID: 32820387 [TBL] [Abstract][Full Text] [Related]
5. Thermal Decomposition Mechanism of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane Accelerated by Nano-Aluminum Hydride (AlH Zhao Y; Mei Z; Zhao FQ; Xu SY; Ju XH ACS Omega; 2020 Sep; 5(36):23193-23200. PubMed ID: 32954170 [TBL] [Abstract][Full Text] [Related]
6. Effect of density on the thermal decomposition mechanism of ε-CL-20: a ReaxFF reactive molecular dynamics simulation study. Wang F; Chen L; Geng D; Lu J; Wu J Phys Chem Chem Phys; 2018 Sep; 20(35):22600-22609. PubMed ID: 30116820 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH Li CF; Mei Z; Zhao FQ; Xu SY; Ju XH Phys Chem Chem Phys; 2018 May; 20(20):14192-14199. PubMed ID: 29761189 [TBL] [Abstract][Full Text] [Related]
8. Determining the mechanical and decomposition properties of high energetic materials (α-RDX, β-HMX, and ε-CL-20) using a neural network potential. Wen M; Chang X; Xu Y; Chen D; Chu Q Phys Chem Chem Phys; 2024 Mar; 26(13):9984-9997. PubMed ID: 38477375 [TBL] [Abstract][Full Text] [Related]
9. Investigation of dislocation and twinning behavior in HMX under high-velocity impact employing molecular dynamics simulations. Yang CS; Zhang SH J Mol Model; 2024 Jan; 30(2):50. PubMed ID: 38267739 [TBL] [Abstract][Full Text] [Related]
10. The role of electric field on decomposition of CL-20/HMX cocrystal: A reactive molecular dynamics study. Zhang J; Guo W J Comput Chem; 2021 Dec; 42(31):2202-2212. PubMed ID: 34476813 [TBL] [Abstract][Full Text] [Related]
11. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies. Ghosh M; Banerjee S; Shafeeuulla Khan MA; Sikder N; Sikder AK Phys Chem Chem Phys; 2016 Sep; 18(34):23554-71. PubMed ID: 27506267 [TBL] [Abstract][Full Text] [Related]
12. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations. Wang F; Chen L; Geng D; Wu J; Lu J; Wang C J Phys Chem A; 2018 Apr; 122(16):3971-3979. PubMed ID: 29620895 [TBL] [Abstract][Full Text] [Related]
13. ReaxFF molecular dynamics simulations on thermal decomposition of RDX-based CMDB propellants. Wei H; Li T; Yao K; Xuan Z J Mol Model; 2022 Nov; 28(12):388. PubMed ID: 36383257 [TBL] [Abstract][Full Text] [Related]
14. Reactive molecular dynamics simulation of thermal decomposition for nitromethane/nano-aluminum composites. Wang XK; Zhao Y; Zhao FQ; Xu SY; Ju XH J Mol Model; 2020 Oct; 26(11):300. PubMed ID: 33052478 [TBL] [Abstract][Full Text] [Related]
15. Effects of Different Guests on Pyrolysis Mechanism of α-CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures. Zhou M; Luo J; Xiang D Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768165 [TBL] [Abstract][Full Text] [Related]
16. Adsorption mechanisms of decomposition species of CHON-containing explosives on aluminum surfaces. Zhong K; Zhang C Phys Chem Chem Phys; 2024 Jun; 26(24):17303-17314. PubMed ID: 38860379 [TBL] [Abstract][Full Text] [Related]
17. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. Hang GY; Yu WL; Wang T; Wang JT J Mol Model; 2019 Jan; 25(1):10. PubMed ID: 30603804 [TBL] [Abstract][Full Text] [Related]
18. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B. Kim SH; Nyande BW; Kim HS; Park JS; Lee WJ; Oh M J Hazard Mater; 2016 May; 308():120-30. PubMed ID: 26808250 [TBL] [Abstract][Full Text] [Related]
19. Decomposition mechanism scenarios of CL-20 co-crystals revealed by ReaxFF molecular dynamics: similarities and differences. Ren C; Liu H; Li X; Guo L Phys Chem Chem Phys; 2020 Feb; 22(5):2827-2840. PubMed ID: 31965130 [TBL] [Abstract][Full Text] [Related]
20. Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Hakansson K; Coorey RV; Zubarev RA; Talrose VL; Hakansson P J Mass Spectrom; 2000 Mar; 35(3):337-46. PubMed ID: 10767762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]