These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30444874)

  • 21. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli.
    Chan CS; Howell JM; Workentine ML; Turner RJ
    Biochem Biophys Res Commun; 2006 Apr; 343(1):244-51. PubMed ID: 16540088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and expression of the Escherichia coli fdhD and fdhE genes, which are involved in the formation of respiratory formate dehydrogenase.
    Schlindwein C; Giordano G; Santini CL; Mandrand MA
    J Bacteriol; 1990 Oct; 172(10):6112-21. PubMed ID: 2170340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes.
    Otrelo-Cardoso AR; Schwuchow V; Rodrigues D; Cabrita EJ; Leimkühler S; Romão MJ; Santos-Silva T
    PLoS One; 2014; 9(1):e87295. PubMed ID: 24498065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
    Leimkühler S; Klipp W
    FEMS Microbiol Lett; 1999 May; 174(2):239-46. PubMed ID: 10339814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.
    Genest O; Neumann M; Seduk F; Stöcklein W; Méjean V; Leimkühler S; Iobbi-Nivol C
    J Biol Chem; 2008 Aug; 283(31):21433-40. PubMed ID: 18522945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli.
    Iwadate Y; Funabasama N; Kato JI
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 29044403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein.
    Lüke I; Butland G; Moore K; Buchanan G; Lyall V; Fairhurst SA; Greenblatt JF; Emili A; Palmer T; Sargent F
    Arch Microbiol; 2008 Dec; 190(6):685-96. PubMed ID: 18716757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase.
    Radon C; Mittelstädt G; Duffus BR; Bürger J; Hartmann T; Mielke T; Teutloff C; Leimkühler S; Wendler P
    Nat Commun; 2020 Apr; 11(1):1912. PubMed ID: 32313256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange.
    Bonomi F; Iametti S; Morleo A; Ta D; Vickery LE
    Biochemistry; 2011 Nov; 50(44):9641-50. PubMed ID: 21977977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator.
    Walker LM; Li B; Niks D; Hille R; Elliott SJ
    J Biol Inorg Chem; 2019 Sep; 24(6):889-898. PubMed ID: 31463592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic evidence that genes fdhD and fdhE do not control synthesis of formate dehydrogenase-N in Escherichia coli K-12.
    Stewart V; Lin JT; Berg BL
    J Bacteriol; 1991 Jul; 173(14):4417-23. PubMed ID: 1648557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
    Niedzialkowska E; Mrugała B; Rugor A; Czub MP; Skotnicka A; Cotelesage JJH; George GN; Szaleniec M; Minor W; Lewiński K
    Protein Expr Purif; 2017 Jun; 134():47-62. PubMed ID: 28343996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing the Electron Acceptor Specificity of
    Kumar H; Leimkühler S
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential Interactions between Tat-specific redox enzyme peptides and their chaperones.
    Chan CS; Chang L; Rommens KL; Turner RJ
    J Bacteriol; 2009 Apr; 191(7):2091-101. PubMed ID: 19151138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly.
    Vergnes A; Pommier J; Toci R; Blasco F; Giordano G; Magalon A
    J Biol Chem; 2006 Jan; 281(4):2170-6. PubMed ID: 16286471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.