BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30445005)

  • 1. Roadmap to 3D-Printed Oral Pharmaceutical Dosage Forms: Feedstock Filament Properties and Characterization for Fused Deposition Modeling.
    Aho J; Bøtker JP; Genina N; Edinger M; Arnfast L; Rantanen J
    J Pharm Sci; 2019 Jan; 108(1):26-35. PubMed ID: 30445005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms.
    Krueger L; Miles JA; Popat A
    J Control Release; 2022 Nov; 351():444-455. PubMed ID: 36184971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials-Process Perspective.
    Azad MA; Olawuni D; Kimbell G; Badruddoza AZM; Hossain MS; Sultana T
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32028732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed dosage forms for oral administration: a review.
    Pan S; Ding S; Zhou X; Zheng N; Zheng M; Wang J; Yang Q; Yang G
    Drug Deliv Transl Res; 2024 Feb; 14(2):312-328. PubMed ID: 37620647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrusion-based systems for topical and transdermal drug delivery.
    Lima AL; Gross IP; de Sá-Barreto LL; Gratieri T; Gelfuso GM; Cunha-Filho M
    Expert Opin Drug Deliv; 2023; 20(7):979-992. PubMed ID: 37522812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling.
    Gordeev EG; Galushko AS; Ananikov VP
    PLoS One; 2018; 13(6):e0198370. PubMed ID: 29879163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties-An Overview.
    Acierno D; Patti A
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Hydrophilic Polymers as a Syringe Extrusion 3D Printing Material for Orodispersible Film.
    Panraksa P; Qi S; Udomsom S; Tipduangta P; Rachtanapun P; Jantanasakulwong K; Jantrawut P
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope.
    Ahmad J; Garg A; Mustafa G; Mohammed AA; Ahmad MZ
    Pharmaceutics; 2023 May; 15(5):. PubMed ID: 37242690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 3D printing in early phase development of pharmaceutical solid dosage forms.
    Milliken RL; Quinten T; Andersen SK; Lamprou DA
    Int J Pharm; 2024 Mar; 653():123902. PubMed ID: 38360287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AI-driven design of customized 3D-printed multi-layer capsules with controlled drug release profiles for personalized medicine.
    Hu J; Wan J; Xi J; Shi W; Qian H
    Int J Pharm; 2024 May; 656():124114. PubMed ID: 38615804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-quality 3D printing of ethylene vinyl acetate with direct pellet-based FDM for medical applications: Mechanical analysis, energy absorption and recovery evaluation.
    Luo S; Zhang X
    J Mech Behav Biomed Mater; 2023 Dec; 148():106231. PubMed ID: 37976686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms.
    Fuenmayor E; Forde M; Healy AV; Devine DM; Lyons JG; McConville C; Major I
    Pharmaceutics; 2018 Apr; 10(2):. PubMed ID: 29614811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Printability of PVA-Based Tablets from Powder and Assessment of Critical Rheological Parameters.
    Lenhart J; Pöstges F; Wagner KG; Lunter DJ
    Pharmaceutics; 2024 Apr; 16(4):. PubMed ID: 38675214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical Models for FDM 3D-Printed Polymers: A Review.
    Bol RJM; Šavija B
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion-based technologies for 3D printing: a comparative study of the processability of thermoplastic polyurethane-based formulations.
    Aguilar-de-Leyva Á; Linares V; Domínguez-Robles J; Casas M; Caraballo I
    Pharm Dev Technol; 2023 Dec; 28(10):939-947. PubMed ID: 37878535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons to learn for 3D printing of drug products by semisolid extrusion (SSE).
    Sun W; Rantanen J; Genina N
    J Pharm Sci; 2024 Jun; ():. PubMed ID: 38852672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing with a 3D printed digital material filament for programming functional gradients.
    Ahn SJ; Lee H; Cho KJ
    Nat Commun; 2024 May; 15(1):3605. PubMed ID: 38714684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review.
    Jiang Q; Zhang M; Mujumdar AS
    Crit Rev Food Sci Nutr; 2022; 62(17):4669-4683. PubMed ID: 33523706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Environmental Settings to Improve the Printability of Paroxetine-Loaded Filaments by Fused Deposition Modelling.
    Figueiredo S; Fernandes AI; Carvalho FG; Pinto JF
    Pharmaceutics; 2023 Nov; 15(11):. PubMed ID: 38004614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.