These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 30445303)

  • 1. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems.
    Falk M; Shleev S
    Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.
    Dagdeviren C; Li Z; Wang ZL
    Annu Rev Biomed Eng; 2017 Jun; 19():85-108. PubMed ID: 28633564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.
    Yang Y; Zhang H; Zhu G; Lee S; Lin ZH; Wang ZL
    ACS Nano; 2013 Jan; 7(1):785-90. PubMed ID: 23199138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-charging cyanobacterial supercapacitor.
    Liu L; Choi S
    Biosens Bioelectron; 2019 Sep; 140():111354. PubMed ID: 31154252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices.
    Teixeira JS; Costa RS; Pires AL; Pereira AM; Pereira C
    Dalton Trans; 2021 Jul; 50(29):9983-10013. PubMed ID: 34264261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell.
    Xue X; Wang S; Guo W; Zhang Y; Wang ZL
    Nano Lett; 2012 Sep; 12(9):5048-54. PubMed ID: 22876785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation.
    Li S; Zhong Q; Zhong J; Cheng X; Wang B; Hu B; Zhou J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14912-6. PubMed ID: 26098265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO
    Suo G; Yu Y; Zhang Z; Wang S; Zhao P; Li J; Wang X
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34335-34341. PubMed ID: 27936326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices.
    Tamang A; Ghosh SK; Garain S; Alam MM; Haeberle J; Henkel K; Schmeisser D; Mandal D
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16143-7. PubMed ID: 26189605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of electro-chemical processes using energy harvesting materials and devices.
    Zhang Y; Xie M; Adamaki V; Khanbareh H; Bowen CR
    Chem Soc Rev; 2017 Dec; 46(24):7757-7786. PubMed ID: 29125613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Porifera Skeletal Structure of Lead-Free Piezocomposite Energy Harvesters.
    Zhang Y; Sun H; Jeong CK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35539-35546. PubMed ID: 30256607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A System-Level Approach towards a Hybrid Energy Harvesting Glove.
    Iranmanesh E; Li W; Zhou H; Wang K
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prospect of supercapacitors in integrated energy harvesting and storage systems.
    Sinha P; Sharma A
    Nanotechnology; 2024 Jul; 35(38):. PubMed ID: 38904267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting.
    Ryu H; Yoon HJ; Kim SW
    Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.
    Zhu G; Zhou YS; Bai P; Meng XS; Jing Q; Chen J; Wang ZL
    Adv Mater; 2014 Jun; 26(23):3788-96. PubMed ID: 24692147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.
    Xue H; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.