These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30445367)

  • 21. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Static and dynamic moduli of posterior dental resin composites under compressive loading.
    Tanimoto Y; Hirayama S; Yamaguchi M; Nishiwaki T
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1531-9. PubMed ID: 21783162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical effects of load speed on the human colon.
    Massalou D; Masson C; Afquir S; Baqué P; Arnoux PJ; Bège T
    J Biomech; 2019 Jun; 91():102-108. PubMed ID: 31133391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.
    Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF
    Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of strain rate and low-gamma irradiation on the compressive properties of UHMWPE.
    Kobayashi K; Kakinoki T; Sakamoto M; Tanabe Y
    Biomed Mater Eng; 2007; 17(2):87-95. PubMed ID: 17377217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the mechanical properties for cranial bones of 8-week-old piglets: the effect of strain rate and region.
    Li Z; Wang G; Ji C; Jiang J; Wang J; Wang J
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1697-1707. PubMed ID: 31119413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.
    Wieding J; Souffrant R; Mittelmeier W; Bader R
    Med Eng Phys; 2013 Apr; 35(4):422-32. PubMed ID: 22809675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution during growth of the mechanical properties of the cortical bone in equine cannon-bones.
    Bigot G; Bouzidi A; Rumelhart C; Martin-Rosset W
    Med Eng Phys; 1996 Jan; 18(1):79-87. PubMed ID: 8771043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of different preservation on the mechanical properties of cortical bone under quasi-static and dynamic compression.
    Qiu J; Liao Z; Xiang H; Li H; Yuan D; Jiang C; Xie J; Qin M; Li K; Zhao H
    Front Bioeng Biotechnol; 2023; 11():1082254. PubMed ID: 36911185
    [No Abstract]   [Full Text] [Related]  

  • 34. Elastic properties of a porous titanium-bone tissue composite.
    Rubshtein AP; Makarova EB; Rinkevich AB; Medvedeva DS; Yakovenkova LI; Vladimirov AB
    Mater Sci Eng C Mater Biol Appl; 2015; 52():54-60. PubMed ID: 25953540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone.
    Uniyal P; Sihota P; Kumar N
    J Mech Behav Biomed Mater; 2022 Jan; 125():104910. PubMed ID: 34700105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applicability of Mechanical Tests for Biomass Pellet Characterisation for Bioenergy Applications.
    Williams O; Taylor S; Lester E; Kingman S; Giddings D; Eastwick C
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30065239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Young's modulus repeatability assessment using cycling compression loading on cancellous bone.
    Guérard S; Chevalier Y; Moreschi H; Defontaine M; Callé S; Mitton D
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1113-7. PubMed ID: 22292210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.