These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30445601)

  • 21. Computational Prediction of RNA-Binding Proteins and Binding Sites.
    Si J; Cui J; Cheng J; Wu R
    Int J Mol Sci; 2015 Nov; 16(11):26303-17. PubMed ID: 26540053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins.
    Van Nostrand EL; Gelboin-Burkhart C; Wang R; Pratt GA; Blue SM; Yeo GW
    Methods; 2017 Apr; 118-119():50-59. PubMed ID: 28003131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide identification of protein binding sites on RNAs in mammalian cells.
    Liu F; Ma T; Zhang Y
    Biochem Biophys Res Commun; 2019 Jan; 508(3):953-958. PubMed ID: 30545631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RPiRLS: Quantitative Predictions of RNA Interacting with Any Protein of Known Sequence.
    Shen WJ; Cui W; Chen D; Zhang J; Xu J
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics-Based Systematic Identification of Nuclear Proteins Anchored to Chromatin via RNA.
    Hiragami-Hamada K; Tani N; Nakayama JI
    Methods Mol Biol; 2020; 2161():89-99. PubMed ID: 32681508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Docking-calculation-based method for predicting protein-RNA interactions.
    Ohue M; Matsuzaki Y; Akiyama Y
    Genome Inform; 2011; 25(1):25-39. PubMed ID: 22230937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analyzing and interpreting genome data at the network level with ConsensusPathDB.
    Herwig R; Hardt C; Lienhard M; Kamburov A
    Nat Protoc; 2016 Oct; 11(10):1889-907. PubMed ID: 27606777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNAcommender: genome-wide recommendation of RNA-protein interactions.
    Corrado G; Tebaldi T; Costa F; Frasconi P; Passerini A
    Bioinformatics; 2016 Dec; 32(23):3627-3634. PubMed ID: 27503225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping of RNA-protein interactions.
    Gopinath SC
    Anal Chim Acta; 2009 Mar; 636(2):117-28. PubMed ID: 19264161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks.
    Alonso-López D; Gutiérrez MA; Lopes KP; Prieto C; Santamaría R; De Las Rivas J
    Nucleic Acids Res; 2016 Jul; 44(W1):W529-35. PubMed ID: 27131791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and Computational Considerations in the Study of RNA-Binding Protein-RNA Interactions.
    Van Nostrand EL; Huelga SC; Yeo GW
    Adv Exp Med Biol; 2016; 907():1-28. PubMed ID: 27256380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex.
    Ban T; Zhu JK; Melcher K; Xu HE
    Cell Mol Life Sci; 2015 Mar; 72(6):1045-58. PubMed ID: 25432705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo prediction of RNA-protein interactions from sequence information.
    Wang Y; Chen X; Liu ZP; Huang Q; Wang Y; Xu D; Zhang XS; Chen R; Chen L
    Mol Biosyst; 2013 Jan; 9(1):133-42. PubMed ID: 23138266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-assisted RNA fragment docking (RnaX) for modeling RNA-protein interactions using ModelX.
    Delgado Blanco J; Radusky LG; Cianferoni D; Serrano L
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24568-24573. PubMed ID: 31732673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data.
    Sbisà E; Catalano D; Grillo G; Licciulli F; Turi A; Liuni S; Pesole G; De Grassi A; Caratozzolo MF; D'Erchia AM; Navarro B; Tullo A; Saccone C; Gisel A
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S20. PubMed ID: 17430565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data.
    Drewe-Boss P; Wessels HH; Ohler U
    Genome Biol; 2018 Nov; 19(1):183. PubMed ID: 30384847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins.
    Hu B; Yang YT; Huang Y; Zhu Y; Lu ZJ
    Nucleic Acids Res; 2017 Jan; 45(D1):D104-D114. PubMed ID: 28053162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions.
    Hayashi T; Matsuzaki Y; Yanagisawa K; Ohue M; Akiyama Y
    BMC Bioinformatics; 2018 May; 19(Suppl 4):62. PubMed ID: 29745830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A MOTIF-BASED METHOD FOR PREDICTING INTERFACIAL RESIDUES IN BOTH THE RNA AND PROTEIN COMPONENTS OF PROTEIN-RNA COMPLEXES.
    Muppirala U; Lewis BA; Mann CM; Dobbs D
    Pac Symp Biocomput; 2016; 21():445-455. PubMed ID: 26776208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.