BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30445673)

  • 1. Design of a 3D BMP-2-Delivering Tannylated PCL Scaffold and Its Anti-Oxidant, Anti-Inflammatory, and Osteogenic Effects In Vitro.
    Lee JY; Lim H; Ahn JW; Jang D; Lee SH; Park K; Kim SE
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenesis induction of periodontal ligament cells onto bone morphogenic protein-2 immobilized PCL fibers.
    Kim SE; Yun YP; Han YK; Lee DW; Ohe JY; Lee BS; Song HR; Park K; Choi BJ
    Carbohydr Polym; 2014 Jan; 99():700-9. PubMed ID: 24274561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells.
    Zhang H; Migneco F; Lin CY; Hollister SJ
    Tissue Eng Part A; 2010 Nov; 16(11):3441-8. PubMed ID: 20560772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications.
    Park J; Lee SJ; Jung TG; Lee JH; Kim WD; Lee JY; Park SA
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111528. PubMed ID: 33385823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction.
    Cao L; Yu Y; Wang J; Werkmeister JA; McLean KM; Liu C
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():298-306. PubMed ID: 28254298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.
    Kim MS; Kim G
    Carbohydr Polym; 2014 Dec; 114():213-221. PubMed ID: 25263884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by the γ-Ray Irradiation Technique.
    Yun YP; Lee JY; Jeong WJ; Park K; Kim HJ; Song JJ; Kim SE; Song HR
    Biomed Res Int; 2015; 2015():302820. PubMed ID: 26090397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core-shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells.
    Hu S; Chen H; Zhou X; Chen G; Hu K; Cheng Y; Wang L; Zhang F
    Int J Nanomedicine; 2018; 13():4145-4155. PubMed ID: 30046239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds.
    Huang KH; Lin YH; Shie MY; Lin CP
    J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration.
    Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L
    Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone.
    Park SA; Lee HJ; Kim SY; Kim KS; Jo DW; Park SY
    J Biomed Mater Res A; 2021 Jun; 109(6):840-848. PubMed ID: 32776655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.
    Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds.
    Kim BR; Nguyen TB; Min YK; Lee BT
    Tissue Eng Part A; 2014 Dec; 20(23-24):3279-89. PubMed ID: 24935525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.