These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30445762)

  • 21. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.
    Wu R; Wu Q; Han F; Liu T; Hu P; Li H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on calibration method of platform inertial navigation system on precision centrifuge.
    Liu QB; Ren SQ; Wang CH
    Rev Sci Instrum; 2020 Dec; 91(12):125007. PubMed ID: 33379938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition.
    Liu B; Wei S; Su G; Wang J; Lu J
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29695041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarized light compass-aided inertial navigation under discontinuous observations environment.
    Yang J; Xu X; Chen X; Wang Y; Liu R
    Opt Express; 2022 May; 30(11):19665-19683. PubMed ID: 36221737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.
    Cai Q; Yang G; Song N; Liu Y
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27338408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GPS-aided method for platform attitude determination based on target images.
    Xu T; Xu L; Tian X; Li X
    Appl Opt; 2017 Mar; 56(8):2378-2387. PubMed ID: 28375285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters.
    Song JW; Park CG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-calibration method for temperature errors in multi-axis rotational inertial navigation system.
    Ban J; Wang L; Liu Z; Zhang L
    Opt Express; 2020 Mar; 28(6):8909-8923. PubMed ID: 32225507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attitude heading reference system using MEMS inertial sensors with dual-axis rotation.
    Kang L; Ye L; Song K; Zhou Y
    Sensors (Basel); 2014 Sep; 14(10):18075-95. PubMed ID: 25268911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel optimal configuration form redundant MEMS inertial sensors based on the orthogonal rotation method.
    Cheng J; Dong J; Landry R; Chen D
    Sensors (Basel); 2014 Jul; 14(8):13661-78. PubMed ID: 25076218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the Design of Attitude-Heading Reference Systems Using the Allan Variance.
    Hidalgo-Carrió J; Arnold S; Poulakis P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):656-65. PubMed ID: 26800535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System.
    Jiang R; Yang G; Zou R; Wang J; Li J
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28304354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.
    Huang H; Chen X; Zhang B; Wang J
    ISA Trans; 2017 Jan; 66():414-424. PubMed ID: 27974146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal.
    Brennan A; Zhang J; Deluzio K; Li Q
    Gait Posture; 2011 Jul; 34(3):320-3. PubMed ID: 21715167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A System-Level Self-Calibration Method for Installation Errors in A Dual-Axis Rotational Inertial Navigation System.
    Bai S; Lai J; Lyu P; Xu X; Liu M; Huang K
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.
    Zhou X; Yang G; Wang J; Wen Z
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29757983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient method for the determination of image correspondence in airborne applications using inertial sensors.
    Woods M; Katsaggelos A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):102-11. PubMed ID: 23456006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments.
    Kim Y; Hwang DH
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.
    Falco G; Pini M; Marucco G
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation.
    Tie J; Cao J; Wu M; Lian J; Cai S; Wang L
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29562653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.