These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 30446112)
1. Effect of polyethylene glycol (PEG) molecular weight and nanofillers on the properties of banana pseudostem nanocellulose films. Faradilla RF; Lee G; Sivakumar P; Stenzel M; Arcot J Carbohydr Polym; 2019 Feb; 205():330-339. PubMed ID: 30446112 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Faradilla RHF; Lee G; Arns JY; Roberts J; Martens P; Stenzel MH; Arcot J Carbohydr Polym; 2017 Oct; 174():1156-1163. PubMed ID: 28821040 [TBL] [Abstract][Full Text] [Related]
3. 3D structural analysis of the biodegradability of banana pseudostem nanocellulose bioplastics. Faradilla RHF; Arns JY; Stenzel MH; Arcot J; Arns CH Sci Rep; 2024 Oct; 14(1):23210. PubMed ID: 39369128 [TBL] [Abstract][Full Text] [Related]
4. Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets. Wu CN; Saito T; Yang Q; Fukuzumi H; Isogai A ACS Appl Mater Interfaces; 2014 Aug; 6(15):12707-12. PubMed ID: 24977651 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system. Unni R; Reshmy R; Latha MS; Philip E; Sindhu R; Binod P; Pandey A; Awasthi MK Chemosphere; 2022 Jul; 298():134324. PubMed ID: 35307393 [TBL] [Abstract][Full Text] [Related]
6. Mechanically Enhanced Nanocrystalline Cellulose/Reduced Graphene Oxide/Polyethylene Glycol Electrically Conductive Composite Film. Xie P; Ge Y; Wang Y; Zhou J; Miao Y; Liu Z Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558225 [TBL] [Abstract][Full Text] [Related]
7. Thin liquid films and monolayers of DMPC mixed with PEG and phospholipid linked PEG. Georgiev GA; Georgiev GD; Lalchev Z Eur Biophys J; 2006 Apr; 35(4):352-62. PubMed ID: 16447038 [TBL] [Abstract][Full Text] [Related]
8. Controlling Miscibility of the Interphase in Polymer-Grafted Nanocellulose/Cellulose Triacetate Nanocomposites. Soeta H; Fujisawa S; Saito T; Isogai A ACS Omega; 2020 Sep; 5(37):23755-23761. PubMed ID: 32984694 [TBL] [Abstract][Full Text] [Related]
9. Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft. da Silva R; Sierakowski MR; Bassani HP; Zawadzki SF; Pirich CL; Ono L; de Freitas RA Int J Biol Macromol; 2016 May; 86():599-605. PubMed ID: 26845482 [TBL] [Abstract][Full Text] [Related]
11. Enhanced stability and mechanical strength of sodium alginate composite films. Liu S; Li Y; Li L Carbohydr Polym; 2017 Mar; 160():62-70. PubMed ID: 28115101 [TBL] [Abstract][Full Text] [Related]
12. Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films. de Moraes JO; Müller CM; Laurindo JB Food Sci Technol Int; 2012 Feb; 18(1):35-45. PubMed ID: 22049161 [TBL] [Abstract][Full Text] [Related]
13. Rendering Banana Plant Residues into a Potentially Commercial Byproduct by Doping Cellulose Films with Phenolic Compounds. Nascimento REA; Monte J; Cadima M; Alves VD; Neves LA Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33803474 [TBL] [Abstract][Full Text] [Related]
14. Effects of poly (ethylene glycol) chains conformational transition on the properties of mixed DMPC/DMPE-PEG thin liquid films and monolayers. Georgiev GA; Sarker DK; Al-Hanbali O; Georgiev GD; Lalchev Z Colloids Surf B Biointerfaces; 2007 Oct; 59(2):184-93. PubMed ID: 17587556 [TBL] [Abstract][Full Text] [Related]
15. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. Sun F; Nordli HR; Pukstad B; Kristofer Gamstedt E; Chinga-Carrasco G J Mech Behav Biomed Mater; 2017 May; 69():377-384. PubMed ID: 28171794 [TBL] [Abstract][Full Text] [Related]
16. Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties. Merais MS; Khairuddin N; Salehudin MH; Mobin Siddique MB; Lepun P; Chuong WS Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629777 [TBL] [Abstract][Full Text] [Related]
17. Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Sabetzadeh M; Bagheri R; Masoomi M Carbohydr Polym; 2016 May; 141():75-81. PubMed ID: 26876998 [TBL] [Abstract][Full Text] [Related]
18. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Aulin C; Salazar-Alvarez G; Lindström T Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562 [TBL] [Abstract][Full Text] [Related]
19. Tailoring Nanocellulose-Cellulose Triacetate Interfaces by Varying the Surface Grafting Density of Poly(ethylene glycol). Soeta H; Lo Re G; Masuda A; Fujisawa S; Saito T; Berglund LA; Isogai A ACS Omega; 2018 Sep; 3(9):11883-11889. PubMed ID: 31459274 [TBL] [Abstract][Full Text] [Related]
20. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]