BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 3044613)

  • 1. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation.
    Sorger PK; Pelham HR
    Cell; 1988 Sep; 54(6):855-64. PubMed ID: 3044613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast heat shock factor contains separable transient and sustained response transcriptional activators.
    Sorger PK
    Cell; 1990 Aug; 62(4):793-805. PubMed ID: 2201452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae.
    Gallo GJ; Schuetz TJ; Kingston RE
    Mol Cell Biol; 1991 Jan; 11(1):281-8. PubMed ID: 1986225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
    Clos J; Westwood JT; Becker PB; Wilson S; Lambert K; Wu C
    Cell; 1990 Nov; 63(5):1085-97. PubMed ID: 2257625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of heat stress on yeast heat shock factor-promoter binding in vivo.
    Li N; Zhang LM; Zhang KQ; Deng JS; Prändl R; Schöffl F
    Acta Biochim Biophys Sin (Shanghai); 2006 May; 38(5):356-62. PubMed ID: 16680377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of an alpha-helical bulge in the yeast heat shock transcription factor.
    Hardy JA; Walsh ST; Nelson HC
    J Mol Biol; 2000 Jan; 295(3):393-409. PubMed ID: 10623534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription.
    Liu XD; Thiele DJ
    Genes Dev; 1996 Mar; 10(5):592-603. PubMed ID: 8598289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance.
    Sewell AK; Yokoya F; Yu W; Miyagawa T; Murayama T; Winge DR
    J Biol Chem; 1995 Oct; 270(42):25079-86. PubMed ID: 7559639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures.
    Abravaya K; Phillips B; Morimoto RI
    Genes Dev; 1991 Nov; 5(11):2117-27. PubMed ID: 1936996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions.
    Nieto-Sotelo J; Wiederrecht G; Okuda A; Parker CS
    Cell; 1990 Aug; 62(4):807-17. PubMed ID: 2201453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant.
    Halladay JT; Craig EA
    Mol Cell Biol; 1995 Sep; 15(9):4890-7. PubMed ID: 7651408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock transcription factor activates transcription of the yeast metallothionein gene.
    Silar P; Butler G; Thiele DJ
    Mol Cell Biol; 1991 Mar; 11(3):1232-8. PubMed ID: 1996089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.