These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30446218)

  • 21. The generation of a 1-hydroxy-2-naphthoate 1,2-dioxygenase by single point mutations of salicylate 1,2-dioxygenase--rational design of mutants and the crystal structures of the A85H and W104Y variants.
    Ferraroni M; Steimer L; Matera I; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Struct Biol; 2012 Dec; 180(3):563-71. PubMed ID: 22960182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.
    Steiner RA; Janssen HJ; Roversi P; Oakley AJ; Fetzner S
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):657-62. PubMed ID: 20080731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion of dioxygenase and lignin-binding domains in a novel secreted enzyme from cellulolytic Streptomyces sp. SirexAA-E.
    Bianchetti CM; Harmann CH; Takasuka TE; Hura GL; Dyer K; Fox BG
    J Biol Chem; 2013 Jun; 288(25):18574-87. PubMed ID: 23653358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Succinate complex crystal structures of the alpha-ketoglutarate-dependent dioxygenase AtsK: steric aspects of enzyme self-hydroxylation.
    Müller I; Stückl C; Wakeley J; Kertesz M; Usón I
    J Biol Chem; 2005 Feb; 280(7):5716-23. PubMed ID: 15542595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure and mutagenic analysis of GDOsp, a gentisate 1,2-dioxygenase from Silicibacter pomeroyi.
    Chen J; Li W; Wang M; Zhu G; Liu D; Sun F; Hao N; Li X; Rao Z; Zhang XC
    Protein Sci; 2008 Aug; 17(8):1362-73. PubMed ID: 18505738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray structures of 4-chlorocatechol 1,2-dioxygenase adducts with substituted catechols: new perspectives in the molecular basis of intradiol ring cleaving dioxygenases specificity.
    Ferraroni M; Kolomytseva M; Scozzafava A; Golovleva L; Briganti F
    J Struct Biol; 2013 Mar; 181(3):274-82. PubMed ID: 23261399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of salicylate 1,2-dioxygenase-substrates adducts: A step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases.
    Ferraroni M; Matera I; Steimer L; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Struct Biol; 2012 Feb; 177(2):431-8. PubMed ID: 22155290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth.
    Cerdan P; Wasserfallen A; Rekik M; Timmis KN; Harayama S
    J Bacteriol; 1994 Oct; 176(19):6074-81. PubMed ID: 7928969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2,4-dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Rü61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1.
    Bauer I; Max N; Fetzner S; Lingens F
    Eur J Biochem; 1996 Sep; 240(3):576-83. PubMed ID: 8856057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Analysis of functionalized arene degradation pathways in model water-organic media].
    Lebedev AS; Orlov VIu
    Prikl Biokhim Mikrobiol; 2014; 50(4):414-21. PubMed ID: 25707118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas.
    Cho JH; Jung DK; Lee K; Rhee S
    J Biol Chem; 2009 Dec; 284(49):34321-30. PubMed ID: 19828456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase.
    Nojiri H; Ashikawa Y; Noguchi H; Nam JW; Urata M; Fujimoto Z; Uchimura H; Terada T; Nakamura S; Shimizu K; Yoshida T; Habe H; Omori T
    J Mol Biol; 2005 Aug; 351(2):355-70. PubMed ID: 16005887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida.
    Bagnéris C; Cammack R; Mason JR
    Appl Environ Microbiol; 2005 Mar; 71(3):1570-80. PubMed ID: 15746362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01.
    Dong X; Fushinobu S; Fukuda E; Terada T; Nakamura S; Shimizu K; Nojiri H; Omori T; Shoun H; Wakagi T
    J Bacteriol; 2005 Apr; 187(7):2483-90. PubMed ID: 15774891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic Insights into Pyridine Ring Degradation Catalyzed by 2,5-Dihydroxypyridine Dioxygenase NicX.
    Wei J; Wang Y; Li X; Zhang X; Liu Y
    Inorg Chem; 2022 Feb; 61(5):2517-2529. PubMed ID: 35060702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. XAS characterization of the active sites of novel intradiol ring-cleaving dioxygenases: hydroxyquinol and chlorocatechol dioxygenases.
    Briganti F; Mangani S; Pedocchi L; Scozzafava A; Golovleva LA; Jadan AP; Solyanikova IP
    FEBS Lett; 1998 Aug; 433(1-2):58-62. PubMed ID: 9738933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Purification and properties of pyrocatechase II from Pseudomonas putida strain 87].
    Solianikova IP; Mal'tseva OV; Golovleva LA
    Biokhimiia; 1992 Dec; 57(12):1883-91. PubMed ID: 1294257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100.
    Daubaras DL; Saido K; Chakrabarty AM
    Appl Environ Microbiol; 1996 Nov; 62(11):4276-9. PubMed ID: 8900023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.