These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30446304)

  • 21. Comparative analysis of resistance gene analogues encoding NBS-LRR domains in cotton.
    Khan AM; Khan AA; Azhar MT; Amrao L; Cheema HM
    J Sci Food Agric; 2016 Jan; 96(2):530-8. PubMed ID: 25640313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa.
    Wu P; Shao ZQ; Wu XZ; Wang Q; Wang B; Chen JQ; Hang YY; Xue JY
    Gene; 2014 Apr; 540(1):54-61. PubMed ID: 24576745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution.
    Richly E; Kurth J; Leister D
    Mol Biol Evol; 2002 Jan; 19(1):76-84. PubMed ID: 11752192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.
    Choi K; Reinhard C; Serra H; Ziolkowski PA; Underwood CJ; Zhao X; Hardcastle TJ; Yelina NE; Griffin C; Jackson M; Mézard C; McVean G; Copenhaver GP; Henderson IR
    PLoS Genet; 2016 Jul; 12(7):e1006179. PubMed ID: 27415776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment.
    Yang J; Xiong C; Li S; Zhou C; Li L; Xue Q; Liu W; Niu Z; Ding X
    BMC Plant Biol; 2022 Nov; 22(1):529. PubMed ID: 36376794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes.
    Yue JX; Meyers BC; Chen JQ; Tian D; Yang S
    New Phytol; 2012 Mar; 193(4):1049-1063. PubMed ID: 22212278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene.
    Leister D
    Trends Genet; 2004 Mar; 20(3):116-22. PubMed ID: 15049302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca.
    Li J; Zhang QY; Gao ZH; Wang F; Duan K; Ye ZW; Gao QH
    Gene; 2013 Sep; 527(1):215-27. PubMed ID: 23806759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion.
    Liu Y; Zeng Z; Zhang YM; Li Q; Jiang XM; Jiang Z; Tang JH; Chen D; Wang Q; Chen JQ; Shao ZQ
    Mol Plant; 2021 Dec; 14(12):2015-2031. PubMed ID: 34364002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants.
    Liu PL; Du L; Huang Y; Gao SM; Yu M
    BMC Evol Biol; 2017 Feb; 17(1):47. PubMed ID: 28173747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of the number of LRRs in plant disease resistance genes.
    Tamura M; Tachida H
    Mol Genet Genomics; 2011 May; 285(5):393-402. PubMed ID: 21442326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants.
    Joshi RK; Nayak S
    Genet Mol Res; 2011 Oct; 10(4):2637-52. PubMed ID: 22057959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses.
    Marone D; Russo MA; Laidò G; De Leonardis AM; Mastrangelo AM
    Int J Mol Sci; 2013 Apr; 14(4):7302-26. PubMed ID: 23549266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species.
    Terefe-Ayana D; Kaufmann H; Linde M; Debener T
    BMC Genomics; 2012 Aug; 13():409. PubMed ID: 22905676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide identification and characterization of nucleotide binding site leucine-rich repeat genes in linseed reveal distinct patterns of gene structure.
    Kale SM; Pardeshi VC; Barvkar VT; Gupta VS; Kadoo NY
    Genome; 2013 Feb; 56(2):91-9. PubMed ID: 23517318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes.
    Xue JY; Wang Y; Wu P; Wang Q; Yang LT; Pan XH; Wang B; Chen JQ
    PLoS One; 2012; 7(5):e36700. PubMed ID: 22615795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-Wide Identification and Evolutionary Analysis of
    Zhang YM; Chen M; Sun L; Wang Y; Yin J; Liu J; Sun XQ; Hang YY
    Front Genet; 2020; 11():484. PubMed ID: 32457809
    [No Abstract]   [Full Text] [Related]  

  • 38. Heterogeneous evolutionary rates of Pi2/9 homologs in rice.
    Wu K; Xu T; Guo C; Zhang X; Yang S
    BMC Genet; 2012 Aug; 13():73. PubMed ID: 22900499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant NBS-LRR proteins: adaptable guards.
    McHale L; Tan X; Koehl P; Michelmore RW
    Genome Biol; 2006; 7(4):212. PubMed ID: 16677430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.
    Arya P; Acharya V
    Mol Genet Genomics; 2018 Feb; 293(1):17-31. PubMed ID: 28900732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.