These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 30446537)

  • 41. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.
    Nan Y; Karásek M; Lalami ME; Preumont A
    Bioinspir Biomim; 2017 Mar; 12(2):026010. PubMed ID: 28128732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wing morphology and flight behavior of pelecaniform seabirds.
    Brewer ML; Hertel F
    J Morphol; 2007 Oct; 268(10):866-77. PubMed ID: 17638303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. What determines probability of surviving predator attacks in bird migration?: the relative importance of vigilance and fuel load.
    Lind J
    J Theor Biol; 2004 Nov; 231(2):223-7. PubMed ID: 15380386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The biomechanical origin of extreme wing allometry in hummingbirds.
    Skandalis DA; Segre PS; Bahlman JW; Groom DJE; Welch KC; Witt CC; McGuire JA; Dudley R; Lentink D; Altshuler DL
    Nat Commun; 2017 Oct; 8(1):1047. PubMed ID: 29051535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phylogenetics and ecomorphology of emarginate primary feathers.
    Klaassen van Oorschot B; Tang HK; Tobalske BW
    J Morphol; 2017 Jul; 278(7):936-947. PubMed ID: 28523646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gliding for a free lunch: biomechanics of foraging flight in common swifts (
    Hedrick TL; Pichot C; de Margerie E
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30455382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flight range, fuel load and the impact of climate change on the journeys of migrant birds.
    Howard C; Stephens PA; Tobias JA; Sheard C; Butchart SHM; Willis SG
    Proc Biol Sci; 2018 Feb; 285(1873):. PubMed ID: 29467262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.
    McFarlane L; Altringham JD; Askew GN
    J Exp Biol; 2016 May; 219(Pt 9):1369-77. PubMed ID: 26994175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes.
    Rogers EJ; McGuire L; Longstaffe FJ; Clerc J; Kunkel E; Fraser E
    J Anim Ecol; 2022 Apr; 91(4):858-869. PubMed ID: 35218220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The function of the alula in avian flight.
    Lee SI; Kim J; Park H; Jabłoński PG; Choi H
    Sci Rep; 2015 May; 5():9914. PubMed ID: 25951056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heart rate and estimated energy expenditure of flapping and gliding in black-browed albatrosses.
    Sakamoto KQ; Takahashi A; Iwata T; Yamamoto T; Yamamoto M; Trathan PN
    J Exp Biol; 2013 Aug; 216(Pt 16):3175-82. PubMed ID: 23661772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis.
    Reynolds KV; Thomas AL; Taylor GK
    J R Soc Interface; 2014 Dec; 11(101):20140645. PubMed ID: 25320064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio.
    Hedrick TL; Tobalske BW; Ros IG; Warrick DR; Biewener AA
    Proc Biol Sci; 2012 May; 279(1735):1986-92. PubMed ID: 22171086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stopover strategies in passerine bird migration: a simulation study.
    Erni B; Liechti F; Bruderer B
    J Theor Biol; 2002 Dec; 219(4):479-93. PubMed ID: 12425980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?
    Santos CD; Silva JP; Muñoz AR; Onrubia A; Wikelski M
    J Anim Ecol; 2020 Jun; 89(6):1317-1328. PubMed ID: 32144757
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mechanical model of wing and theoretical estimate of taper factor for three gliding birds.
    Zahedi MS; Khan MY
    J Biosci; 2007 Mar; 32(2):351-61. PubMed ID: 17435326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.
    Serrano FJ; Chiappe LM
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.