These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30446627)

  • 1. The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation.
    Popov IK; Ray HJ; Skoglund P; Keller R; Chang C
    Development; 2018 Dec; 145(24):. PubMed ID: 30446627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RhoGEF protein Plekhg5 self-associates via its PH domain to regulate apical cell constriction.
    Popov IK; Tao J; Chang C
    Mol Biol Cell; 2024 Oct; 35(10):ar134. PubMed ID: 39196644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during
    Baldwin A; Popov IK; Keller R; Wallingford J; Chang C
    Mol Biol Cell; 2023 Jun; 34(7):ar64. PubMed ID: 37043306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation.
    Ossipova O; Chuykin I; Chu CW; Sokol SY
    Development; 2015 Jan; 142(1):99-107. PubMed ID: 25480917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells.
    Lee JY; Harland RM
    Dev Biol; 2007 Nov; 311(1):40-52. PubMed ID: 17868669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncorking gastrulation: the morphogenetic movement of bottle cells.
    Lee JY
    Wiley Interdiscip Rev Dev Biol; 2012; 1(2):286-93. PubMed ID: 23801442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure.
    Itoh K; Ossipova O; Sokol SY
    J Cell Sci; 2014 Jun; 127(Pt 11):2542-53. PubMed ID: 24681784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bmp Signal Gradient Modulates Convergent Cell Movement via
    Yoon J; Kumar V; Goutam RS; Kim SC; Park S; Lee U; Kim J
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment of Cdc42 through the GAP domain of RLIP participates in remodeling of the actin cytoskeleton and is involved in Xenopus gastrulation.
    Boissel L; Houssin N; Chikh A; Rynditch A; Van Hove L; Moreau J
    Dev Biol; 2007 Dec; 312(1):331-43. PubMed ID: 17950267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The involvement of lethal giant larvae and Wnt signaling in bottle cell formation in Xenopus embryos.
    Choi SC; Sokol SY
    Dev Biol; 2009 Dec; 336(1):68-75. PubMed ID: 19782678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin.
    Zhou J; Kim HY; Wang JH; Davidson LA
    Development; 2010 Aug; 137(16):2785-94. PubMed ID: 20630946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing.
    Popov IK; Kwon T; Crossman DK; Crowley MR; Wallingford JB; Chang C
    Dev Biol; 2017 Jun; 426(2):429-441. PubMed ID: 27209239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.
    Kwan KM; Kirschner MW
    Development; 2005 Oct; 132(20):4599-610. PubMed ID: 16176947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assays for Apical Constriction Using the Xenopus Model.
    Baldwin AT; Popov IK; Wallingford JB; Chang C
    Methods Mol Biol; 2022; 2438():415-437. PubMed ID: 35147955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of xSDF-1α, xCXCR4, and xCXCR7 during gastrulation in Xenopus laevis.
    Mishra SK; Nagata T; Furusawa K; Sasaki A; Fukui A
    Int J Dev Biol; 2013; 57(1):95-100. PubMed ID: 23585357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation.
    Cao Y; Siegel D; Knöchel W
    Mech Dev; 2006 Aug; 123(8):614-25. PubMed ID: 16860542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoderm and endoderm internalization in the Xenopus gastrula.
    Winklbauer R
    Curr Top Dev Biol; 2020; 136():243-270. PubMed ID: 31959290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development.
    Miyakoshi A; Ueno N; Kinoshita N
    Differentiation; 2004 Feb; 72(1):48-55. PubMed ID: 15008826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis.
    Wang S; Cha SW; Zorn AM; Wylie C
    PLoS One; 2013; 8(10):e76854. PubMed ID: 24204686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.