These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 30446652)
81. High iodine concentration attenuates RET/PTC3 oncogene activation in thyroid follicular cells. Fiore AP; Fuziwara CS; Kimura ET Thyroid; 2009 Nov; 19(11):1249-56. PubMed ID: 19725779 [TBL] [Abstract][Full Text] [Related]
82. A class I histone deacetylase inhibitor, entinostat, enhances lapatinib efficacy in HER2-overexpressing breast cancer cells through FOXO3-mediated Bim1 expression. Lee J; Bartholomeusz C; Mansour O; Humphries J; Hortobagyi GN; Ordentlich P; Ueno NT Breast Cancer Res Treat; 2014 Jul; 146(2):259-72. PubMed ID: 24916181 [TBL] [Abstract][Full Text] [Related]
84. Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature. Labrecque MP; Brown LG; Coleman IM; Nguyen HM; Lin DW; Corey E; Nelson PS; Morrissey C PLoS One; 2021; 16(1):e0245602. PubMed ID: 33471819 [TBL] [Abstract][Full Text] [Related]
85. AZD1480 blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines. Couto JP; Almeida A; Daly L; Sobrinho-Simões M; Bromberg JF; Soares P PLoS One; 2012; 7(10):e46869. PubMed ID: 23056499 [TBL] [Abstract][Full Text] [Related]
86. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim. Park SH; Ito K; Olcott W; Katsyv I; Halstead-Nussloch G; Irie HY Breast Cancer Res; 2015 Jun; 17(1):86. PubMed ID: 26084280 [TBL] [Abstract][Full Text] [Related]
87. Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. Segouffin-Cariou C; Billaud M J Biol Chem; 2000 Feb; 275(5):3568-76. PubMed ID: 10652352 [TBL] [Abstract][Full Text] [Related]
88. ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells. Sarkar S; Mazumdar A; Dash R; Sarkar D; Fisher PB; Mandal M Cancer Biol Ther; 2010 Apr; 9(8):592-603. PubMed ID: 20139705 [TBL] [Abstract][Full Text] [Related]
90. Ret Receptor Has Distinct Alterations and Functions in Breast Cancer. Gattelli A; Hynes NE; Schor IE; Vallone SA J Mammary Gland Biol Neoplasia; 2020 Mar; 25(1):13-26. PubMed ID: 32080788 [TBL] [Abstract][Full Text] [Related]
91. The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells. Verbeek HH; Alves MM; de Groot JW; Osinga J; Plukker JT; Links TP; Hofstra RM J Clin Endocrinol Metab; 2011 Jun; 96(6):E991-5. PubMed ID: 21470995 [TBL] [Abstract][Full Text] [Related]
92. Mechanistic patterns and clinical implications of oncogenic tyrosine kinase fusions in human cancers. Cheong TC; Jang A; Wang Q; Leonardi GC; Ricciuti B; Alessi JV; Di Federico A; Awad MM; Lehtinen MK; Harris MH; Chiarle R Nat Commun; 2024 Jun; 15(1):5110. PubMed ID: 38877018 [TBL] [Abstract][Full Text] [Related]
93. RETooling the RET Inhibitor Pralsetinib for ESR1 Fusion-Positive Breast Cancer and Beyond. Wu J; Subbiah V Cancer Res; 2023 Oct; 83(19):3159-3161. PubMed ID: 37779428 [TBL] [Abstract][Full Text] [Related]
94. Effect of the RET Inhibitor Vandetanib in a Patient With RET Fusion-Positive Metastatic Non-Small-Cell Lung Cancer. Falchook GS; Ordóñez NG; Bastida CC; Stephens PJ; Miller VA; Gaido L; Jackson T; Karp DD J Clin Oncol; 2016 May; 34(15):e141-4. PubMed ID: 25366691 [No Abstract] [Full Text] [Related]
95. RET in breast cancer: functional and therapeutic implications. Morandi A; Plaza-Menacho I; Isacke CM Trends Mol Med; 2011 Mar; 17(3):149-57. PubMed ID: 21251878 [TBL] [Abstract][Full Text] [Related]
96. Hallmarks of RET and Co-occuring Genomic Alterations in Adashek JJ; Desai AP; Andreev-Drakhlin AY; Roszik J; Cote GJ; Subbiah V Mol Cancer Ther; 2021 Oct; 20(10):1769-1776. PubMed ID: 34493590 [TBL] [Abstract][Full Text] [Related]
97. TrkA overexpression in non-tumorigenic human breast cell lines confers oncogenic and metastatic properties. Kyker-Snowman K; Hughes RM; Yankaskas CL; Cravero K; Karthikeyan S; Button B; Waters I; Rosen DM; Dennison L; Hunter N; Donaldson J; Christenson ES; Konstantopoulos K; Hurley PJ; Croessmann S; Park BH Breast Cancer Res Treat; 2020 Feb; 179(3):631-642. PubMed ID: 31823098 [TBL] [Abstract][Full Text] [Related]
98. RET overexpression leads to increased brain metastatic competency in luminal breast cancer. Jagust P; Powell AM; Ola M; Watson L; de Pablos-Aragoneses A; García-Gómez P; Fallon R; Bane F; Heiland M; Morris G; Cavanagh B; McGrath J; Ottaviani D; Hegarty A; Cocchiglia S; Sweeney KJ; MacNally S; Brett FM; Cryan J; Beausang A; Morris P; Valiente M; Hill ADK; Varešlija D; Young LS J Natl Cancer Inst; 2024 Oct; 116(10):1632-1644. PubMed ID: 38852945 [TBL] [Abstract][Full Text] [Related]
99. Fragment-Based Discovery of a Dual pan-RET/VEGFR2 Kinase Inhibitor Optimized for Single-Agent Polypharmacology. Frett B; Carlomagno F; Moccia ML; Brescia A; Federico G; De Falco V; Admire B; Chen Z; Qi W; Santoro M; Li HY Angew Chem Int Ed Engl; 2015 Jul; 54(30):8717-21. PubMed ID: 26126987 [TBL] [Abstract][Full Text] [Related]
100. ER-positive breast cancer cells are poised for RET-mediated endocrine resistance. Horibata S; Rice EJ; Mukai C; Marks BA; Sams K; Zheng H; Anguish LJ; Coonrod SA; Danko CG PLoS One; 2018; 13(4):e0194023. PubMed ID: 29608602 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]