These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
3. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
4. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
5. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising. Nielsen AN; Greene DJ; Gratton C; Dosenbach NUF; Petersen SE; Schlaggar BL Cereb Cortex; 2019 Jun; 29(6):2455-2469. PubMed ID: 29850877 [TBL] [Abstract][Full Text] [Related]
7. Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies. Satterthwaite TD; Ciric R; Roalf DR; Davatzikos C; Bassett DS; Wolf DH Hum Brain Mapp; 2019 May; 40(7):2033-2051. PubMed ID: 29091315 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of denoising strategies for task-based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks. Mascali D; Moraschi M; DiNuzzo M; Tommasin S; Fratini M; Gili T; Wise RG; Mangia S; Macaluso E; Giove F Hum Brain Mapp; 2021 Apr; 42(6):1805-1828. PubMed ID: 33528884 [TBL] [Abstract][Full Text] [Related]
10. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Kundu P; Brenowitz ND; Voon V; Worbe Y; Vértes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744 [TBL] [Abstract][Full Text] [Related]
11. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data. Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818 [TBL] [Abstract][Full Text] [Related]
12. Evaluating denoising strategies in resting-state functional magnetic resonance in traumatic brain injury (EpiBioS4Rx). Weiler M; Casseb RF; de Campos BM; Crone JS; Lutkenhoff ES; Vespa PM; Monti MM; Hum Brain Mapp; 2022 Oct; 43(15):4640-4649. PubMed ID: 35723510 [TBL] [Abstract][Full Text] [Related]
13. The impact of real-time fMRI denoising on online evaluation of brain activity and functional connectivity. Misaki M; Bodurka J J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34126595 [No Abstract] [Full Text] [Related]
14. Reduction of Motion Artifacts in Functional Connectivity Resulting from Infrequent Large Motion. Birn RM; Dean DC; Wooten W; Planalp EM; Kecskemeti S; Alexander AL; Goldsmith HH; Davidson RJ Brain Connect; 2022 Oct; 12(8):740-753. PubMed ID: 35152725 [No Abstract] [Full Text] [Related]
15. Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis. Li Y; Saxe R; Anzellotti S PLoS One; 2019; 14(9):e0222914. PubMed ID: 31550276 [TBL] [Abstract][Full Text] [Related]
16. Pitfalls and Recommended Strategies and Metrics for Suppressing Motion Artifacts in Functional MRI. Raval V; Nguyen KP; Pinho M; Dewey RB; Trivedi M; Montillo AA Neuroinformatics; 2022 Oct; 20(4):879-896. PubMed ID: 35291020 [TBL] [Abstract][Full Text] [Related]
17. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Power JD; Plitt M; Gotts SJ; Kundu P; Voon V; Bandettini PA; Martin A Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2105-E2114. PubMed ID: 29440410 [TBL] [Abstract][Full Text] [Related]
18. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem. Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564 [TBL] [Abstract][Full Text] [Related]
19. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR). Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516 [TBL] [Abstract][Full Text] [Related]
20. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]