These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 30447221)
21. Exogenous gene integration mediated by genome editing technologies in zebrafish. Morita H; Taimatsu K; Yanagi K; Kawahara A Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984 [TBL] [Abstract][Full Text] [Related]
22. Gene editing and gene regulation with CRISPR. Harrison P; Hart S Exp Physiol; 2018 Apr; 103(4):437-438. PubMed ID: 29603460 [No Abstract] [Full Text] [Related]
23. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711 [No Abstract] [Full Text] [Related]
24. CRISPR off-targets: a question of context. Haeussler M Cell Biol Toxicol; 2020 Feb; 36(1):5-9. PubMed ID: 31734746 [No Abstract] [Full Text] [Related]
25. CRISPR Diagnosis and Therapeutics with Single Base Pair Precision. Lee SH; Park YH; Jin YB; Kim SU; Hur JK Trends Mol Med; 2020 Mar; 26(3):337-350. PubMed ID: 31791730 [TBL] [Abstract][Full Text] [Related]
26. CRISPR technologies for bacterial systems: Current achievements and future directions. Choi KR; Lee SY Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508 [TBL] [Abstract][Full Text] [Related]
27. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Alagoz M; Kherad N Int J Mol Med; 2020 Aug; 46(2):521-534. PubMed ID: 32467995 [TBL] [Abstract][Full Text] [Related]
31. CRISPR-Cas9: A revolution in genome editing in rheumatic diseases. Duroux-Richard I; Giovannangeli C; Apparailly F Joint Bone Spine; 2017 Jan; 84(1):1-4. PubMed ID: 27825565 [No Abstract] [Full Text] [Related]
32. Guide RNAs: it's good to be choosy. Marx V Nat Methods; 2020 Dec; 17(12):1179-1182. PubMed ID: 33154568 [No Abstract] [Full Text] [Related]
33. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900 [TBL] [Abstract][Full Text] [Related]
35. CRISPR tools found in thousands of viruses could boost gene editing. Ledford H Nature; 2022 Dec; 612(7938):21. PubMed ID: 36418881 [No Abstract] [Full Text] [Related]
36. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems. Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234 [TBL] [Abstract][Full Text] [Related]
38. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells. Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565 [TBL] [Abstract][Full Text] [Related]
39. Applications of CRISPR systems in respiratory health: Entering a new 'red pen' era in genome editing. Moses C; Kaur P Respirology; 2019 Jul; 24(7):628-637. PubMed ID: 30883991 [TBL] [Abstract][Full Text] [Related]
40. Rational designs of in vivo CRISPR-Cas delivery systems. Xu CF; Chen GJ; Luo YL; Zhang Y; Zhao G; Lu ZD; Czarna A; Gu Z; Wang J Adv Drug Deliv Rev; 2021 Jan; 168():3-29. PubMed ID: 31759123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]