These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 30447221)
41. Thinking About CRISPR: The Ethics of Human Genome Editing. Barrangou R CRISPR J; 2019 Oct; 2(5):247-248. PubMed ID: 31599676 [No Abstract] [Full Text] [Related]
42. Black Swans of CRISPR: Stochasticity and Complexity of Genetic Regulation. Cheong KH; Koh JM; Jones MC Bioessays; 2019 Jul; 41(7):e1900032. PubMed ID: 31090950 [TBL] [Abstract][Full Text] [Related]
43. Off- and on-target effects of genome editing in mouse embryos. Ayabe S; Nakashima K; Yoshiki A J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723 [TBL] [Abstract][Full Text] [Related]
44. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Kumlehn J; Pietralla J; Hensel G; Pacher M; Puchta H J Integr Plant Biol; 2018 Dec; 60(12):1127-1153. PubMed ID: 30387552 [TBL] [Abstract][Full Text] [Related]
45. A highly efficient in vivo plasmid editing tool based on CRISPR-Cas12a and phage λ Red recombineering. Geng Y; Yan H; Li P; Ren G; Guo X; Yin P; Zhang L; Qian Z; Zhao Z; Sun YC J Genet Genomics; 2019 Sep; 46(9):455-458. PubMed ID: 31607505 [No Abstract] [Full Text] [Related]
46. Editing and investigating genomes with TALE and CRISPR/Cas systems: applications of artificial TALE and CRISPR-Cas systems. Giovannangeli C; Concordet JP Methods; 2014 Sep; 69(2):119-20. PubMed ID: 25248487 [No Abstract] [Full Text] [Related]
47. Navigating Viral Space with CRISPR Technologies. Barrangou R CRISPR J; 2022 Aug; 5(4):487. PubMed ID: 35972366 [No Abstract] [Full Text] [Related]
48. Understanding off-target effects through hybridization kinetics and thermodynamics. Nazipova NN; Shabalina SA Cell Biol Toxicol; 2020 Feb; 36(1):11-15. PubMed ID: 31823200 [No Abstract] [Full Text] [Related]
50. Twelve genes at one blow: multiplex genome editing with CRISPR/Cas. Verhage L Plant J; 2021 Apr; 106(1):6-7. PubMed ID: 33861513 [No Abstract] [Full Text] [Related]
51. [CRISPR/Cas-based genome editing in Aspergillus niger]. Zheng X; Zheng P; Sun J Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):980-990. PubMed ID: 33783162 [TBL] [Abstract][Full Text] [Related]
52. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Chaterji S; Ahn EH; Kim DH Theranostics; 2017; 7(18):4445-4469. PubMed ID: 29158838 [TBL] [Abstract][Full Text] [Related]
53. What are the current bottlenecks in developing and applying CRISPR technologies? Kellogg EH; Gootenberg J; Abudayyeh O; Wong ASL; Dahlman JE; Lapinaite A; Myhrvold C; Liu CC; Hsu PD; Mali P; Qi LS Cell Syst; 2022 Aug; 13(8):589-593. PubMed ID: 35981511 [No Abstract] [Full Text] [Related]
54. Sharpening the CRISPR Toolbox. Barrangou R CRISPR J; 2020 Dec; 3(6):421. PubMed ID: 33346716 [No Abstract] [Full Text] [Related]
55. CRISPR to the Core. Lambert LJ CRISPR J; 2020 Dec; 3(6):433. PubMed ID: 33346714 [No Abstract] [Full Text] [Related]
56. A rush of CRISPR to the lungs. Villanueva MT Nat Rev Drug Discov; 2024 Aug; 23(8):580. PubMed ID: 38987628 [No Abstract] [Full Text] [Related]
57. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology. Hashemi A Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500 [TBL] [Abstract][Full Text] [Related]