These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30447988)

  • 1. ATP Release by Red Blood Cells under Flow: Model and Simulations.
    Zhang H; Shen Z; Hogan B; Barakat AI; Misbah C
    Biophys J; 2018 Dec; 115(11):2218-2229. PubMed ID: 30447988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cells under flow show maximal ATP release for specific hematocrit.
    Gou Z; Zhang H; Abbasi M; Misbah C
    Biophys J; 2021 Nov; 120(21):4819-4831. PubMed ID: 34547277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of shear-induced ATP release from red blood cells.
    Wan J; Ristenpart WD; Stone HA
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16432-7. PubMed ID: 18922780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell dynamics: from cell deformation to ATP release.
    Wan J; Forsyth AM; Stone HA
    Integr Biol (Camb); 2011 Oct; 3(10):972-81. PubMed ID: 21935538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation-induced ATP release from red blood cells requires CFTR activity.
    Sprague RS; Ellsworth ML; Stephenson AH; Kleinhenz ME; Lonigro AJ
    Am J Physiol; 1998 Nov; 275(5):H1726-32. PubMed ID: 9815080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.
    Kalsi KK; González-Alonso J
    Exp Physiol; 2012 Mar; 97(3):419-32. PubMed ID: 22227202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
    Borghi N; Brochard-Wyart F
    Biophys J; 2007 Aug; 93(4):1369-79. PubMed ID: 17526591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.
    Forsyth AM; Wan J; Owrutsky PD; Abkarian M; Stone HA
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):10986-91. PubMed ID: 21690355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergy between shear-induced migration and secondary flows on red blood cells transport in arteries: considerations on oxygen transport.
    Biasetti J; Spazzini PG; Hedin U; Gasser TC
    J R Soc Interface; 2014 Aug; 11(97):20140403. PubMed ID: 24850907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo.
    Sprung R; Sprague R; Spence D
    Anal Chem; 2002 May; 74(10):2274-8. PubMed ID: 12038751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow.
    Xu S; Li X; LaPenna KB; Yokota SD; Huke S; He P
    Cardiovasc Res; 2017 Apr; 113(5):508-518. PubMed ID: 28158679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects.
    Gov NS; Safran SA
    Biophys J; 2005 Mar; 88(3):1859-74. PubMed ID: 15613626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic deformation and recovery response of red blood cells to a cyclically reversing shear flow: Effects of frequency of cyclically reversing shear flow and shear stress level.
    Watanabe N; Kataoka H; Yasuda T; Takatani S
    Biophys J; 2006 Sep; 91(5):1984-98. PubMed ID: 16766612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending the Power-Law Hemolysis Model to Complex Flows.
    Faghih MM; Keith Sharp M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27657486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.