These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30447991)

  • 21. Micropipette-based biomechanical nanotools on living cells.
    Wang H; Zhou F; Guo Y; Ju LA
    Eur Biophys J; 2022 Mar; 51(2):119-133. PubMed ID: 35171346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The development of single molecule force spectroscopy: from polymer biophysics to molecular machines.
    Bustamante C; Yan S
    Q Rev Biophys; 2022 Aug; 55():e9. PubMed ID: 35916314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physically based principles of cell adhesion mechanosensitivity in tissues.
    Ladoux B; Nicolas A
    Rep Prog Phys; 2012 Nov; 75(11):116601. PubMed ID: 23085962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in the application of atomic force microscopy to structural biology.
    Dumitru AC; Koehler M
    J Struct Biol; 2023 Jun; 215(2):107963. PubMed ID: 37044358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force Sensing on Cells and Tissues by Atomic Force Microscopy.
    Holuigue H; Lorenc E; Chighizola M; Schulte C; Varinelli L; Deraco M; Guaglio M; Gariboldi M; Podestà A
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative advantages of mechanical biosensors.
    Arlett JL; Myers EB; Roukes ML
    Nat Nanotechnol; 2011 Apr; 6(4):203-15. PubMed ID: 21441911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy.
    Sharma S; Rasool HI; Palanisamy V; Mathisen C; Schmidt M; Wong DT; Gimzewski JK
    ACS Nano; 2010 Apr; 4(4):1921-6. PubMed ID: 20218655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy.
    Lostao A; Lim K; Pallarés MC; Ptak A; Marcuello C
    Int J Biol Macromol; 2023 May; 238():124089. PubMed ID: 36948336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invited review: engineering approaches to cytoskeletal mechanics.
    Stamenović D; Wang N
    J Appl Physiol (1985); 2000 Nov; 89(5):2085-90. PubMed ID: 11053366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data.
    te Velthuis AJ; Kerssemakers JW; Lipfert J; Dekker NH
    Biophys J; 2010 Aug; 99(4):1292-302. PubMed ID: 20713015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A transformation for the mechanical fingerprints of complex biomolecular interactions.
    Zhang Y; Dudko OK
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16432-7. PubMed ID: 24062442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids.
    Andolfi L; Greco SLM; Tierno D; Chignola R; Martinelli M; Giolo E; Luppi S; Delfino I; Zanetti M; Battistella A; Baldini G; Ricci G; Lazzarino M
    Acta Biomater; 2019 Aug; 94():505-513. PubMed ID: 31154056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.
    Erdemir A; Hunter PJ; Holzapfel GA; Loew LM; Middleton J; Jacobs CR; Nithiarasu P; Löhner R; Wei G; Winkelstein BA; Barocas VH; Guilak F; Ku JP; Hicks JL; Delp SL; Sacks M; Weiss JA; Ateshian GA; Maas SA; McCulloch AD; Peng GCY
    J Biomech Eng; 2018 Feb; 140(2):0247011-02470111. PubMed ID: 29247253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Force Application by a Nanoscale DNA Force Spectrometer.
    Darcy M; Crocker K; Wang Y; Le JV; Mohammadiroozbahani G; Abdelhamid MAS; Craggs TD; Castro CE; Bundschuh R; Poirier MG
    ACS Nano; 2022 Apr; 16(4):5682-5695. PubMed ID: 35385658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanics-based in silico medicine: the manifesto of a new science.
    Viceconti M
    J Biomech; 2015 Jan; 48(2):193-4. PubMed ID: 25482662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into chromatin fibre structure by in vitro and in silico single-molecule stretching experiments.
    Collepardo-Guevara R; Schlick T
    Biochem Soc Trans; 2013 Apr; 41(2):494-500. PubMed ID: 23514142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of DNA interactions using single-molecule force spectroscopy.
    Ritzefeld M; Walhorn V; Anselmetti D; Sewald N
    Amino Acids; 2013 Jun; 44(6):1457-75. PubMed ID: 23468137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.
    Cossio P; Hummer G; Szabo A
    Biophys J; 2016 Aug; 111(4):832-840. PubMed ID: 27558726
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.