BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30448038)

  • 1. Bacterial Cohesion Predicts Spatial Distribution in the Larval Zebrafish Intestine.
    Schlomann BH; Wiles TJ; Wall ES; Guillemin K; Parthasarathy R
    Biophys J; 2018 Dec; 115(11):2271-2277. PubMed ID: 30448038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.
    Jemielita M; Taormina MJ; Burns AR; Hampton JS; Rolig AS; Guillemin K; Parthasarathy R
    mBio; 2014 Dec; 5(6):. PubMed ID: 25516613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut bacterial aggregates as living gels.
    Schlomann BH; Parthasarathy R
    Elife; 2021 Sep; 10():. PubMed ID: 34490846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher-Order Interactions Dampen Pairwise Competition in the Zebrafish Gut Microbiome.
    Sundarraman D; Hay EA; Martins DM; Shields DS; Pettinari NL; Parthasarathy R
    mBio; 2020 Oct; 11(5):. PubMed ID: 33051365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine.
    Stephens WZ; Wiles TJ; Martinez ES; Jemielita M; Burns AR; Parthasarathy R; Bohannan BJ; Guillemin K
    mBio; 2015 Oct; 6(6):e01163-15. PubMed ID: 26507229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic Parallelism during Experimental Adaptation of a Free-Living Bacterium to the Zebrafish Gut.
    Lebov JF; Schlomann BH; Robinson CD; Bohannan BJM
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation.
    Wiles TJ; Schlomann BH; Wall ES; Betancourt R; Parthasarathy R; Guillemin K
    PLoS Biol; 2020 Mar; 18(3):e3000661. PubMed ID: 32196484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What causes the spatial heterogeneity of bacterial flora in the intestine of zebrafish larvae?
    Yang J; Shimogonya Y; Ishikawa T
    J Theor Biol; 2018 Jun; 446():101-109. PubMed ID: 29526663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.
    Arias-Jayo N; Alonso-Saez L; Ramirez-Garcia A; Pardo MA
    Zebrafish; 2018 Apr; 15(2):96-106. PubMed ID: 29261035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota.
    Wiles TJ; Jemielita M; Baker RP; Schlomann BH; Logan SL; Ganz J; Melancon E; Eisen JS; Guillemin K; Parthasarathy R
    PLoS Biol; 2016 Jul; 14(7):e1002517. PubMed ID: 27458727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration.
    Robinson CD; Klein HS; Murphy KD; Parthasarathy R; Guillemin K; Bohannan BJM
    PLoS Biol; 2018 Dec; 16(12):e2006893. PubMed ID: 30532251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The zebrafish as a model for gastrointestinal tract-microbe interactions.
    Flores EM; Nguyen AT; Odem MA; Eisenhoffer GT; Krachler AM
    Cell Microbiol; 2020 Mar; 22(3):e13152. PubMed ID: 31872937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development.
    Burns AR; Stephens WZ; Stagaman K; Wong S; Rawls JF; Guillemin K; Bohannan BJ
    ISME J; 2016 Mar; 10(3):655-64. PubMed ID: 26296066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut.
    Wong S; Stephens WZ; Burns AR; Stagaman K; David LA; Bohannan BJ; Guillemin K; Rawls JF
    mBio; 2015 Sep; 6(5):e00687-15. PubMed ID: 26419876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome's link to Pseudocapillaria tomentosa infection and pathology.
    Gaulke CA; Martins ML; Watral VG; Humphreys IR; Spagnoli ST; Kent ML; Sharpton TJ
    Microbiome; 2019 Jan; 7(1):10. PubMed ID: 30678738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages.
    Wiles TJ; Wall ES; Schlomann BH; Hay EA; Parthasarathy R; Guillemin K
    mBio; 2018 Oct; 9(5):. PubMed ID: 30301859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sublethal antibiotics collapse gut bacterial populations by enhancing aggregation and expulsion.
    Schlomann BH; Wiles TJ; Wall ES; Guillemin K; Parthasarathy R
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21392-21400. PubMed ID: 31591228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.
    Toh MC; Goodyear M; Daigneault M; Allen-Vercoe E; Van Raay TJ
    Zebrafish; 2013 Jun; 10(2):194-8. PubMed ID: 23530761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community assembly and turnover within the intestines of developing zebrafish.
    Yan Q; van der Gast CJ; Yu Y
    PLoS One; 2012; 7(1):e30603. PubMed ID: 22276219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating bacterial-animal symbioses with light sheet microscopy.
    Taormina MJ; Jemielita M; Stephens WZ; Burns AR; Troll JV; Parthasarathy R; Guillemin K
    Biol Bull; 2012 Aug; 223(1):7-20. PubMed ID: 22983029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.