BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30448038)

  • 41. Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua).
    Bakke I; Coward E; Andersen T; Vadstein O
    Environ Microbiol; 2015 Oct; 17(10):3914-24. PubMed ID: 25923170
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monoassociation with bacterial isolates reveals the role of colonization, community complexity and abundance on locomotor behavior in larval zebrafish.
    Weitekamp CA; Kvasnicka A; Keely SP; Brinkman NE; Howey XM; Gaballah S; Phelps D; Catron T; Zurlinden T; Wheaton E; Tal T
    Anim Microbiome; 2021 Jan; 3(1):12. PubMed ID: 33499997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial colonization is required for normal neurobehavioral development in zebrafish.
    Phelps D; Brinkman NE; Keely SP; Anneken EM; Catron TR; Betancourt D; Wood CE; Espenschied ST; Rawls JF; Tal T
    Sci Rep; 2017 Sep; 7(1):11244. PubMed ID: 28894128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of different concentrations of Microcystis aeruginosa on the intestinal microbiota and immunity of zebrafish (Danio rerio).
    Qian H; Zhang M; Liu G; Lu T; Sun L; Pan X
    Chemosphere; 2019 Jan; 214():579-586. PubMed ID: 30286424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Growth-Promoting Effect of Dietary Nucleotides in Fish Is Associated with an Intestinal Microbiota-Mediated Reduction in Energy Expenditure.
    Guo X; Ran C; Zhang Z; He S; Jin M; Zhou Z
    J Nutr; 2017 May; 147(5):781-788. PubMed ID: 28356434
    [No Abstract]   [Full Text] [Related]  

  • 46. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio).
    Merrifield DL; Shaw BJ; Harper GM; Saoud IP; Davies SJ; Handy RD; Henry TB
    Environ Pollut; 2013 Mar; 174():157-63. PubMed ID: 23262071
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae).
    Mohammed WS; Ziganshina EE; Shagimardanova EI; Gogoleva NE; Ziganshin AM
    Sci Rep; 2018 Jul; 8(1):10073. PubMed ID: 29968731
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of Larval Zebrafish Model to Study Within-Host Infection Dynamics.
    Prajsnar TK; McVicker G; Williams A; Renshaw SA; Foster SJ
    Methods Mol Biol; 2018; 1736():147-156. PubMed ID: 29322467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora.
    Cai M; Ma S; Hu R; Tomberlin JK; Thomashow LS; Zheng L; Li W; Yu Z; Zhang J
    Environ Microbiol; 2018 Nov; 20(11):4051-4062. PubMed ID: 30318817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.
    Deutscher AT; Burke CM; Darling AE; Riegler M; Reynolds OL; Chapman TA
    Microbiome; 2018 May; 6(1):85. PubMed ID: 29729663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial interspecies quorum sensing in the mammalian gut microbiota.
    Bivar Xavier K
    C R Biol; 2018; 341(5):297-299. PubMed ID: 29631889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical Mechanisms of Pathogen Restriction by Intestinal Bacteria.
    Rangan KJ; Hang HC
    Trends Biochem Sci; 2017 Nov; 42(11):887-898. PubMed ID: 28927699
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Fat Diet Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish.
    Arias-Jayo N; Abecia L; Alonso-Sáez L; Ramirez-Garcia A; Rodriguez A; Pardo MA
    Microb Ecol; 2018 Nov; 76(4):1089-1101. PubMed ID: 29736898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altered Schaedler flora mice: A defined microbiota animal model to study the microbiota-gut-brain axis.
    Lyte JM; Proctor A; Phillips GJ; Lyte M; Wannemuehler M
    Behav Brain Res; 2019 Jan; 356():221-226. PubMed ID: 30153465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dysbiosis of gut microbiota by dietary exposure of three graphene-family materials in zebrafish (Danio rerio).
    Zheng M; Lu J; Lin G; Su H; Sun J; Luan T
    Environ Pollut; 2019 Nov; 254(Pt A):112969. PubMed ID: 31398638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Addition of insoluble fiber to isolation media allows for increased metabolite diversity of lab-cultivable microbes derived from zebrafish gut samples.
    Condren AR; Costa MS; Sanchez NR; Konkapaka S; Gallik KL; Saxena A; Murphy BT; Sanchez LM
    Gut Microbes; 2020 Jul; 11(4):1064-1076. PubMed ID: 32202200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Infection with a small intestinal helminth, Heligmosomoides polygyrus bakeri, consistently alters microbial communities throughout the murine small and large intestine.
    Rapin A; Chuat A; Lebon L; Zaiss MM; Marsland BJ; Harris NL
    Int J Parasitol; 2020 Jan; 50(1):35-46. PubMed ID: 31759944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microscale spatial analysis provides evidence for adhesive monopolization of dietary nutrients by specific intestinal bacteria.
    Nagara Y; Takada T; Nagata Y; Kado S; Kushiro A
    PLoS One; 2017; 12(4):e0175497. PubMed ID: 28394924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota.
    Lagkouvardos I; Pukall R; Abt B; Foesel BU; Meier-Kolthoff JP; Kumar N; Bresciani A; Martínez I; Just S; Ziegler C; Brugiroux S; Garzetti D; Wenning M; Bui TP; Wang J; Hugenholtz F; Plugge CM; Peterson DA; Hornef MW; Baines JF; Smidt H; Walter J; Kristiansen K; Nielsen HB; Haller D; Overmann J; Stecher B; Clavel T
    Nat Microbiol; 2016 Aug; 1(10):16131. PubMed ID: 27670113
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mouse models for human intestinal microbiota research: a critical evaluation.
    Hugenholtz F; de Vos WM
    Cell Mol Life Sci; 2018 Jan; 75(1):149-160. PubMed ID: 29124307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.