These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30448400)

  • 1. Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system.
    Possenti L; Casagrande G; Di Gregorio S; Zunino P; Costantino ML
    Microvasc Res; 2019 Mar; 122():101-110. PubMed ID: 30448400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of lymphatic drainage from tissues using homogenization theory.
    Roose T; Swartz MA
    J Biomech; 2012 Jan; 45(1):107-15. PubMed ID: 22036032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A dynamic model describing lymphatic circulation].
    Yao W; Ding G; Shen X; Wang S; Dang R; Chen E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):831-4. PubMed ID: 18788290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Image-Based Model of Fluid Flow Through Lymph Nodes.
    Cooper LJ; Heppell JP; Clough GF; Ganapathisubramani B; Roose T
    Bull Math Biol; 2016 Jan; 78(1):52-71. PubMed ID: 26690921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphatic vessels of the eye - old questions - new insights.
    Grüntzig J; Hollmann F
    Ann Anat; 2019 Jan; 221():1-16. PubMed ID: 30240907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.
    Wilson JT; van Loon R; Wang W; Zawieja DC; Moore JE
    J Biomech; 2015 Oct; 48(13):3584-90. PubMed ID: 26315921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation.
    Swartz MA; Kaipainen A; Netti PA; Brekken C; Boucher Y; Grodzinsky AJ; Jain RK
    J Biomech; 1999 Dec; 32(12):1297-307. PubMed ID: 10569708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
    Macdonald AJ; Arkill KP; Tabor GR; McHale NG; Winlove CP
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H305-13. PubMed ID: 18487438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for fluid drainage by the lymphatic system.
    Heppell C; Richardson G; Roose T
    Bull Math Biol; 2013 Jan; 75(1):49-81. PubMed ID: 23161129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance point characterization of interstitial fluid volume regulation.
    Dongaonkar RM; Laine GA; Stewart RH; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2009 Jul; 297(1):R6-16. PubMed ID: 19420292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Model for Interstitial Drainage Through a Sliding Lymphatic Valve.
    Heppell C; Roose T; Richardson G
    Bull Math Biol; 2015 Jun; 77(6):1101-31. PubMed ID: 25911590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph.
    Venugopal AM; Quick CM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H303-9. PubMed ID: 19028799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-dimensional computational model of lymph transport across primary lymphatic valves.
    Galie P; Spilker RL
    J Biomech Eng; 2009 Nov; 131(11):111004. PubMed ID: 20353255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling of fluid and oxygen exchanges through microcirculation for the assessment of microcirculation alterations caused by type 2 diabetes.
    Tang Y; He Y
    Microvasc Res; 2018 May; 117():61-73. PubMed ID: 29407525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the effect of morphology on lymphatic valve dynamic function.
    Ballard M; Wolf KT; Nepiyushchikh Z; Dixon JB; Alexeev A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1343-1356. PubMed ID: 29804152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of hyaluronan clearance with application to estimation of lymph flow.
    Rössler A; Fink M; Goswami N; Batzel JJ
    Physiol Meas; 2011 Aug; 32(8):1213-38. PubMed ID: 21743125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional adaptation of bovine mesenteric lymphatic vessels to mesenteric venous hypertension.
    Quick CM; Criscione JC; Kotiya A; Dongaonkar RM; Hardy J; Wilson E; Gashev AA; Laine GA; Stewart RH
    Am J Physiol Regul Integr Comp Physiol; 2014 Jun; 306(12):R901-7. PubMed ID: 24671245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the Pressure Drop Required for Lymph Flow through Initial Lymphatic Networks.
    Sloas DC; Stewart SA; Sweat RS; Doggett TM; Alves NG; Breslin JW; Gaver DP; Murfee WL
    Lymphat Res Biol; 2016 Jun; 14(2):62-9. PubMed ID: 27267167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object-oriented modeling of thoracic fluid balance to study cardiogenic pulmonary congestion in humans.
    Ngo C; Dahlmanns S; Vollmer T; Misgeld B; Leonhardt S
    Comput Methods Programs Biomed; 2019 Oct; 180():104998. PubMed ID: 31421608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.