These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30448650)
1. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. Chen YC; Lin LY J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650 [TBL] [Abstract][Full Text] [Related]
2. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte. Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855 [TBL] [Abstract][Full Text] [Related]
3. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte. Shinde PA; Lokhande VC; Chodankar NR; Ji T; Kim JH; Lokhande CD J Colloid Interface Sci; 2016 Dec; 483():261-267. PubMed ID: 27565957 [TBL] [Abstract][Full Text] [Related]
4. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors. Chen L; Wu C; Qin W; Wang X; Jia C J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. Park J; Kumar V; Wang X; Lee PS; Kim W ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724 [TBL] [Abstract][Full Text] [Related]
6. A Redox-Mediator-Integrated Flexible Micro-Supercapacitor with Improved Energy Storage Capability and Suppressed Self-Discharge Rate. Wi SM; Kim J; Lee S; Choi YR; Kim SH; Park JB; Cho Y; Ahn W; Jang AR; Hong J; Lee YW Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835791 [TBL] [Abstract][Full Text] [Related]
7. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors. Huang X; Wang Q; Chen XY; Zhang ZJ Phys Chem Chem Phys; 2016 Apr; 18(15):10438-52. PubMed ID: 27030290 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542 [TBL] [Abstract][Full Text] [Related]
9. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte. Park J; Kim B; Yoo YE; Chung H; Kim W ACS Appl Mater Interfaces; 2014 Nov; 6(22):19499-503. PubMed ID: 25425124 [TBL] [Abstract][Full Text] [Related]
10. A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Daraghmeh A; Hussain S; Saadeddin I; Servera L; Xuriguera E; Cornet A; Cirera A Nanoscale Res Lett; 2017 Dec; 12(1):639. PubMed ID: 29288337 [TBL] [Abstract][Full Text] [Related]
11. Construction and Electrochemical Properties of Solid-state Supercapacitors with Redox Additives. Wang B; Li D; Sun M; Li Y; Liang J; Jing Y; Du J; Hao J; Qin W; Wu C; Chen Y Chem Asian J; 2022 Sep; 17(18):e202200702. PubMed ID: 35871606 [TBL] [Abstract][Full Text] [Related]
12. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive. Kim D; Lee G; Kim D; Yun J; Lee SS; Ha JS Nanoscale; 2016 Aug; 8(34):15611-20. PubMed ID: 27511060 [TBL] [Abstract][Full Text] [Related]
13. High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti Hu M; Cui C; Shi C; Wu ZS; Yang J; Cheng R; Guang T; Wang H; Lu H; Wang X ACS Nano; 2019 Jun; 13(6):6899-6905. PubMed ID: 31100003 [TBL] [Abstract][Full Text] [Related]
14. A Redox-Active Binder for Electrochemical Capacitor Electrodes. Benoit C; Demeter D; Bélanger D; Cougnon C Angew Chem Int Ed Engl; 2016 Apr; 55(17):5318-21. PubMed ID: 26997572 [TBL] [Abstract][Full Text] [Related]
15. Revealing Energy Density in Porous Carbon Supercapacitors Using Hydroquinone Sulfonic Acid as Cathodic and Alizarin Red S as Anodic Redox Electrolytes. Abbasi S; Hekmat F; Shahrokhian S; Chougale M; Dubal DP Small; 2024 Dec; 20(49):e2406467. PubMed ID: 39373296 [TBL] [Abstract][Full Text] [Related]
16. Energy Enhancement of a Nickel-Cobalt-Mixed Metallic Metal-Organic Framework Electrode and a Potassium Iodide Redox Mediator Bound with an Aqueous Electrolyte for High-Performance Redox-Aided Asymmetric Supercapacitors. Thirugnanasambandam E; Shanmugam G; Shahul Hameed AM Inorg Chem; 2022 Nov; 61(44):17873-17882. PubMed ID: 36279200 [TBL] [Abstract][Full Text] [Related]
17. A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors. Chen HY; Al-Oweini R; Friedl J; Lee CY; Li L; Kortz U; Stimming U; Srinivasan M Nanoscale; 2015 May; 7(17):7934-41. PubMed ID: 25866193 [TBL] [Abstract][Full Text] [Related]
18. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Manikandan R; Raj CJ; Moulton SE; Todorov TS; Yu KH; Kim BC Chemistry; 2021 Jan; 27(2):669-682. PubMed ID: 32700787 [TBL] [Abstract][Full Text] [Related]
20. Graphene/Carbon Paper Combined with Redox Active Electrolyte for Supercapacitors with High Performance. Xia Y; Mo Y; Meng W; Du X; Ma C Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31426288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]