These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30448757)
1. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Ren CG; Kong CC; Wang SX; Xie ZH Chemosphere; 2019 Feb; 217():773-779. PubMed ID: 30448757 [TBL] [Abstract][Full Text] [Related]
2. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Ren CG; Kong CC; Bian B; Liu W; Li Y; Luo YM; Xie ZH Int J Phytoremediation; 2017 Sep; 19(9):789-797. PubMed ID: 28165756 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume Gomes MP; Marques RZ; Nascentes CC; Scotti MR Int J Phytoremediation; 2020; 22(13):1362-1371. PubMed ID: 32672473 [TBL] [Abstract][Full Text] [Related]
4. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Wang G; Wang L; Ma F; You Y; Wang Y; Yang D J Hazard Mater; 2020 May; 389():121873. PubMed ID: 31862351 [TBL] [Abstract][Full Text] [Related]
5. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Chen B; Zhu YG; Zhang X; Jakobsen I Environ Sci Pollut Res Int; 2005 Nov; 12(6):325-31. PubMed ID: 16305138 [TBL] [Abstract][Full Text] [Related]
6. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Rajtor M; Piotrowska-Seget Z Chemosphere; 2016 Nov; 162():105-16. PubMed ID: 27487095 [TBL] [Abstract][Full Text] [Related]
7. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
8. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Lin AJ; Zhang XH; Wong MH; Ye ZH; Lou LQ; Wang YS; Zhu YG Environ Geochem Health; 2007 Dec; 29(6):473-81. PubMed ID: 17874190 [TBL] [Abstract][Full Text] [Related]
9. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Janeeshma E; Puthur JT Arch Microbiol; 2020 Jan; 202(1):1-16. PubMed ID: 31552478 [TBL] [Abstract][Full Text] [Related]
10. Citric acid and AMF inoculation combination-assisted phytoextraction of vanadium (V) by Medicago sativa in V mining contaminated soil. Qiu L; Gao W; Wang Z; Li B; Sun W; Gao P; Sun X; Song B; Zhang Y; Kong T; Lin H Environ Sci Pollut Res Int; 2021 Dec; 28(47):67472-67486. PubMed ID: 34254246 [TBL] [Abstract][Full Text] [Related]
11. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. de Melo RW; Schneider J; de Souza CE; Sousa SC; Guimarães GL; de Souza MF Int J Phytoremediation; 2014; 16(7-12):840-58. PubMed ID: 24933888 [TBL] [Abstract][Full Text] [Related]
12. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
13. Tripartite legume-rhizobia-mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps. Ficano N; Porder S; McCulloch LA Ecology; 2021 Nov; 102(11):e03489. PubMed ID: 34292601 [TBL] [Abstract][Full Text] [Related]
14. How a functional soil animal-earthworm affect arbuscular mycorrhizae-assisted phytoremediation in metals contaminated soil? Wang L; Yang D; Chen R; Ma F; Wang G J Hazard Mater; 2022 Aug; 435():128991. PubMed ID: 35650720 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889 [TBL] [Abstract][Full Text] [Related]
17. Growth and Nutrient Status of Kayu Kuku [ Pericopsis mooniana (Thw.) Thw] with Mycorrhiza in Soil Media of Nickel Post Mining Site. Husna ; Budi RSW; Mansur I; Kusmana C Pak J Biol Sci; 2016; 19(4):158-170. PubMed ID: 29022992 [TBL] [Abstract][Full Text] [Related]
18. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Göhre V; Paszkowski U Planta; 2006 May; 223(6):1115-22. PubMed ID: 16555102 [TBL] [Abstract][Full Text] [Related]
19. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Varun M; Ogunkunle CO; D'Souza R; Favas P; Paul M Bull Environ Contam Toxicol; 2017 Jun; 98(6):867-873. PubMed ID: 28456824 [TBL] [Abstract][Full Text] [Related]
20. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Alarcón A; Davies FT; Autenrieth RL; Zuberer DA Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]