These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30448870)
1. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. da Fonseca Breda FA; da Silva TFR; Dos Santos SG; Alves GC; Reis VM Arch Microbiol; 2019 May; 201(4):547-558. PubMed ID: 30448870 [TBL] [Abstract][Full Text] [Related]
2. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. Brusamarello-Santos LC; Gilard F; Brulé L; Quilleré I; Gourion B; Ratet P; Maltempi de Souza E; Lea PJ; Hirel B PLoS One; 2017; 12(3):e0174576. PubMed ID: 28362815 [TBL] [Abstract][Full Text] [Related]
3. Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels. Calzavara AK; Paiva PHG; Gabriel LC; Oliveira ALM; Milani K; Oliveira HC; Bianchini E; Pimenta JA; de Oliveira MCN; Dias-Pereira J; Stolf-Moreira R Plant Biol (Stuttg); 2018 Sep; 20(5):870-878. PubMed ID: 29762883 [TBL] [Abstract][Full Text] [Related]
4. Robust biological nitrogen fixation in a model grass-bacterial association. Pankievicz VC; do Amaral FP; Santos KF; Agtuca B; Xu Y; Schueller MJ; Arisi AC; Steffens MB; de Souza EM; Pedrosa FO; Stacey G; Ferrieri RA Plant J; 2015 Mar; 81(6):907-19. PubMed ID: 25645593 [TBL] [Abstract][Full Text] [Related]
5. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. do Amaral FP; Pankievicz VC; Arisi AC; de Souza EM; Pedrosa F; Stacey G Plant Mol Biol; 2016 Apr; 90(6):689-97. PubMed ID: 26873699 [TBL] [Abstract][Full Text] [Related]
6. Common gene expression patterns are observed in rice roots during associations with plant growth-promoting bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Wiggins G; Thomas J; Rahmatallah Y; Deen C; Haynes A; Degon Z; Glazko G; Mukherjee A Sci Rep; 2022 May; 12(1):8827. PubMed ID: 35614083 [TBL] [Abstract][Full Text] [Related]
7. Quantitative proteomic analysis reveals altered enzyme expression profile in Zea mays roots during the early stages of colonization by Herbaspirillum seropedicae. Nunes RO; Domiciano Abrahão G; de Sousa Alves W; Aparecida de Oliveira J; César Sousa Nogueira F; Pasqualoto Canellas L; Lopes Olivares F; Benedeta Zingali R; Soares MR Proteomics; 2021 Apr; 21(7-8):e2000129. PubMed ID: 33570822 [TBL] [Abstract][Full Text] [Related]
8. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense. Pereira-Defilippi L; Pereira EM; Silva FM; Moro GV Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28613381 [TBL] [Abstract][Full Text] [Related]
9. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. Pii Y; Aldrighetti A; Valentinuzzi F; Mimmo T; Cesco S J Exp Bot; 2019 Feb; 70(4):1313-1324. PubMed ID: 30715422 [TBL] [Abstract][Full Text] [Related]
10. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method. el-Komy HM; Saad OA; Hetta AM Folia Microbiol (Praha); 2003; 48(6):787-93. PubMed ID: 15058193 [TBL] [Abstract][Full Text] [Related]
11. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. Rodríguez-Salazar J; Suárez R; Caballero-Mellado J; Iturriaga G FEMS Microbiol Lett; 2009 Jul; 296(1):52-9. PubMed ID: 19459961 [TBL] [Abstract][Full Text] [Related]
12. Improved Stability of Engineered Ammonia Production in the Plant-Symbiont Schnabel T; Sattely E ACS Synth Biol; 2021 Nov; 10(11):2982-2996. PubMed ID: 34591447 [TBL] [Abstract][Full Text] [Related]
13. Can silicon applied to correct soil acidity in combination with Azospirillum brasilense inoculation improve nitrogen use efficiency in maize? Galindo FS; Pagliari PH; Buzetti S; Rodrigues WL; Santini JMK; Boleta EHM; Rosa PAL; Rodrigues Nogueira TA; Lazarini E; Filho MCMT PLoS One; 2020; 15(4):e0230954. PubMed ID: 32267854 [TBL] [Abstract][Full Text] [Related]
14. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides. Balsanelli E; Tuleski TR; de Baura VA; Yates MG; Chubatsu LS; Pedrosa Fde O; de Souza EM; Monteiro RA PLoS One; 2013; 8(10):e77001. PubMed ID: 24130823 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Fukami J; Ollero FJ; de la Osa C; Valderrama-Fernández R; Nogueira MA; Megías M; Hungria M Arch Microbiol; 2018 Oct; 200(8):1191-1203. PubMed ID: 29881875 [TBL] [Abstract][Full Text] [Related]
17. Inoculation of Herbaspirillum seropedicae strain SmR1 increases biomass in maize roots DKB 390 variety in the early stages of plant development. da Cunha ET; Pedrolo AM; Bueno JCF; Pereira TP; Soares CRFS; Arisi ACM Arch Microbiol; 2022 Jun; 204(7):373. PubMed ID: 35672591 [TBL] [Abstract][Full Text] [Related]
19. Effect of Chemical Fertilization on the Impacts of Plant Growth-Promoting Rhizobacteria in Maize Crops. Nascimento FC; Kandasamy S; Lazarovits G; Rigobelo EC Curr Microbiol; 2020 Dec; 77(12):3878-3887. PubMed ID: 32965535 [TBL] [Abstract][Full Text] [Related]
20. Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation. da Cunha ET; Pedrolo AM; Arisi ACM J Sci Food Agric; 2024 Jul; 104(9):5360-5367. PubMed ID: 38324183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]