These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 30448928)
1. Neuroprotective Mechanism of Hypoxic Post-conditioning Involves HIF1-Associated Regulation of the Pentose Phosphate Pathway in Rat Brain. Vetrovoy O; Sarieva K; Galkina O; Eschenko N; Lyanguzov A; Gluschenko T; Tyulkova E; Rybnikova E Neurochem Res; 2019 Jun; 44(6):1425-1436. PubMed ID: 30448928 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological HIF1 Inhibition Eliminates Downregulation of the Pentose Phosphate Pathway and Prevents Neuronal Apoptosis in Rat Hippocampus Caused by Severe Hypoxia. Vetrovoy O; Sarieva K; Lomert E; Nimiritsky P; Eschenko N; Galkina O; Lyanguzov A; Tyulkova E; Rybnikova E J Mol Neurosci; 2020 May; 70(5):635-646. PubMed ID: 31865524 [TBL] [Abstract][Full Text] [Related]
3. Oxidative Stress Accompanies HIF1-Dependent Impairment of Glucose Metabolism in the Hippocampus of Adult Rats That Survived Prenatal Severe Hypoxia. Vetrovoy O; Stratilov V; Potapova S; Tyulkova E Dev Neurosci; 2024; 46(5):297-307. PubMed ID: 37980886 [TBL] [Abstract][Full Text] [Related]
4. [Changes in intensity of hypoxic brain damage in rats induced by hypoxic postconditioning]. Vorob'ev MG; Rybnikov EA; Samoĭlov MO Morfologiia; 2012; 141(1):12-5. PubMed ID: 22724327 [TBL] [Abstract][Full Text] [Related]
5. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Yamamoto Y; Hosoda K; Imahori T; Tanaka J; Matsuo K; Nakai T; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E Brain Res; 2018 May; 1687():82-94. PubMed ID: 29510140 [TBL] [Abstract][Full Text] [Related]
6. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. Tang BL J Cell Biochem; 2019 Sep; 120(9):14285-14295. PubMed ID: 31127649 [TBL] [Abstract][Full Text] [Related]
7. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Cao L; Zhang D; Chen J; Qin YY; Sheng R; Feng X; Chen Z; Ding Y; Li M; Qin ZH Free Radic Biol Med; 2017 Nov; 112():433-444. PubMed ID: 28823591 [TBL] [Abstract][Full Text] [Related]
8. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction. Gupte SA; Okada T; McMurtry IF; Oka M Pulm Pharmacol Ther; 2006; 19(4):303-9. PubMed ID: 16203165 [TBL] [Abstract][Full Text] [Related]
9. Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress. Shrivastava K; Shukla D; Bansal A; Sairam M; Banerjee PK; Ilavazhagan G Neurochem Int; 2008 Feb; 52(3):368-75. PubMed ID: 17706837 [TBL] [Abstract][Full Text] [Related]
10. Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia. Rybnikova E; Vorobyev M; Pivina S; Samoilov M Neurosci Lett; 2012 Mar; 513(1):100-5. PubMed ID: 22366259 [TBL] [Abstract][Full Text] [Related]
11. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018 [TBL] [Abstract][Full Text] [Related]
12. The activity of the pentose phosphate pathway is increased in response to oxidative stress in Alzheimer's disease. Palmer AM J Neural Transm (Vienna); 1999; 106(3-4):317-28. PubMed ID: 10392540 [TBL] [Abstract][Full Text] [Related]
13. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems. Barcia-Vieitez R; Ramos-Martínez JI IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203 [TBL] [Abstract][Full Text] [Related]
14. The regulation of the pentose phosphate pathway: Remember Krebs. Ramos-Martinez JI Arch Biochem Biophys; 2017 Jan; 614():50-52. PubMed ID: 28041936 [TBL] [Abstract][Full Text] [Related]
15. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412 [TBL] [Abstract][Full Text] [Related]
16. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Coimbra-Costa D; Alva N; Duran M; Carbonell T; Rama R Redox Biol; 2017 Aug; 12():216-225. PubMed ID: 28259102 [TBL] [Abstract][Full Text] [Related]
17. Alterations of the redox state, pentose pathway and glutathione metabolism in an acute porphyria model. Their impact on heme pathway. Faut M; Paiz A; San Martín de Viale LC; Mazzetti MB Exp Biol Med (Maywood); 2013 Feb; 238(2):133-43. PubMed ID: 23390166 [TBL] [Abstract][Full Text] [Related]
18. Flaxseed Protects Against Diabetes-Induced Glucotoxicity by Modulating Pentose Phosphate Pathway and Glutathione-Dependent Enzyme Activities in Rats. Gök M; Ulusu NN; Tarhan N; Tufan C; Ozansoy G; Arı N; Karasu Ç J Diet Suppl; 2016; 13(3):339-51. PubMed ID: 26317558 [TBL] [Abstract][Full Text] [Related]
19. Early-life N-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats. Sukhanova IA; Sebentsova EA; Khukhareva DD; Vysokikh MY; Bezuglov VV; Bobrov MY; Levitskaya NG Int J Dev Neurosci; 2019 Nov; 78():7-18. PubMed ID: 31369794 [TBL] [Abstract][Full Text] [Related]
20. Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: a biochemical approach. Hota SK; Barhwal K; Singh SB; Ilavazhagan G Neurochem Int; 2007; 51(6-7):384-90. PubMed ID: 17531352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]