These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
627 related articles for article (PubMed ID: 30449193)
1. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193 [TBL] [Abstract][Full Text] [Related]
2. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
4. Comparative evaluation of morphology and osteogenic behavior of human Wharton's jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. Jamalpoor Z; Soleimani M; Taromi N; Asgari A J Cell Physiol; 2019 Dec; 234(12):23123-23134. PubMed ID: 31127624 [TBL] [Abstract][Full Text] [Related]
5. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Pu L; Meng M; Wu J; Zhang J; Hou Z; Gao H; Xu H; Liu B; Tang W; Jiang L; Li Y Stem Cell Res Ther; 2017 Mar; 8(1):72. PubMed ID: 28320452 [TBL] [Abstract][Full Text] [Related]
6. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Kim MJ; Shin KS; Jeon JH; Lee DR; Shim SH; Kim JK; Cha DH; Yoon TK; Kim GJ Cell Tissue Res; 2011 Oct; 346(1):53-64. PubMed ID: 21987220 [TBL] [Abstract][Full Text] [Related]
7. Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Dan P; Velot É; Francius G; Menu P; Decot V Acta Biomater; 2017 Jan; 48():227-237. PubMed ID: 27769940 [TBL] [Abstract][Full Text] [Related]
8. Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells. Thakur G; Bok EY; Kim SB; Jo CH; Oh SJ; Baek JC; Park JE; Kang YH; Lee SL; Kumar R; Rho GJ Eur J Cell Biol; 2022; 101(3):151245. PubMed ID: 35667339 [TBL] [Abstract][Full Text] [Related]
9. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization. Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells. Shi Q; Gao J; Jiang Y; Sun B; Lu W; Su M; Xu Y; Yang X; Zhang Y Stem Cell Res Ther; 2017 Nov; 8(1):246. PubMed ID: 29096715 [TBL] [Abstract][Full Text] [Related]
11. 3D Decellularized Native Extracellular Matrix Scaffold for In Vitro Culture Expansion of Human Wharton's Jelly-Derived Mesenchymal Stem Cells (hWJ MSCs). Sundaram B; Cherian AG; Kumar S Methods Mol Biol; 2018; 1577():35-53. PubMed ID: 28963712 [TBL] [Abstract][Full Text] [Related]
12. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872 [TBL] [Abstract][Full Text] [Related]
14. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919 [TBL] [Abstract][Full Text] [Related]
15. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Ma B; Wang T; Li J; Wang Q Stem Cell Res Ther; 2022 Jul; 13(1):327. PubMed ID: 35851415 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of mesenchymal stromal cells derived from rabbit bone marrow and Wharton's jelly for adipose tissue engineering. Li L; Dong J; He Y; Mao W; Tang H; Dong Y; Lyu F Connect Tissue Res; 2020 Nov; 61(6):537-545. PubMed ID: 31185754 [No Abstract] [Full Text] [Related]
17. Decellularized Wharton's jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. Kehtari M; Beiki B; Zeynali B; Hosseini FS; Soleimanifar F; Kaabi M; Soleimani M; Enderami SE; Kabiri M; Mahboudi H J Cell Biochem; 2019 Apr; 120(4):6683-6697. PubMed ID: 30417406 [TBL] [Abstract][Full Text] [Related]
18. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042 [TBL] [Abstract][Full Text] [Related]
19. In vitro interaction of human Wharton's jelly mesenchymal stem cells with biomimetic 3D scaffold. Jamalpoor Z; Taromi N; Soleimani M; Koudehi MF; Asgari A J Biomed Mater Res A; 2019 Jun; 107(6):1166-1175. PubMed ID: 30636089 [TBL] [Abstract][Full Text] [Related]
20. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche. Obradovic H; Krstic J; Trivanovic D; Mojsilovic S; Okic I; Kukolj T; Ilic V; Jaukovic A; Terzic M; Bugarski D Placenta; 2019 Jul; 82():25-34. PubMed ID: 31174623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]