These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 3044923)

  • 1. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations.
    Aguilera A; Klein HL
    Genetics; 1988 Aug; 119(4):779-90. PubMed ID: 3044923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and molecular analysis of recombination events in Saccharomyces cerevisiae occurring in the presence of the hyper-recombination mutation hpr1.
    Aguilera A; Klein HL
    Genetics; 1989 Jul; 122(3):503-17. PubMed ID: 2668113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene.
    Rong L; Palladino F; Aguilera A; Klein HL
    Genetics; 1991 Jan; 127(1):75-85. PubMed ID: 1849857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae.
    Aguilera A
    Curr Genet; 1995 Mar; 27(4):298-305. PubMed ID: 7614550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and characterization of temperature-sensitive pol1 mutants of Saccharomyces cerevisiae.
    Lucchini G; Muzi Falconi M; Pizzagalli A; Aguilera A; Klein HL; Plevani P
    Gene; 1990 May; 90(1):99-104. PubMed ID: 2199334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meiotic exchange within and between chromosomes requires a common Rec function in Saccharomyces cerevisiae.
    Wagstaff JE; Klapholz S; Waddell CS; Jensen L; Esposito RE
    Mol Cell Biol; 1985 Dec; 5(12):3532-44. PubMed ID: 3915779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and genetic analysis of extragenic suppressors of the hyper-deletion phenotype of the Saccharomyces cerevisiae hpr1 delta mutation.
    Santos-Rosa H; Aguilera A
    Genetics; 1995 Jan; 139(1):57-66. PubMed ID: 7705651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance-independence of mitotic intrachromosomal recombination in Saccharomyces cerevisiae.
    Yuan LW; Keil RL
    Genetics; 1990 Feb; 124(2):263-73. PubMed ID: 2407612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae.
    Jackson JA; Fink GR
    Genetics; 1985 Feb; 109(2):303-32. PubMed ID: 3882522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for two pathways of meiotic intrachromosomal recombination in yeast.
    Gottlieb S; Wagstaff J; Esposito RE
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):7072-6. PubMed ID: 2674944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae.
    Freedman JA; Jinks-Robertson S
    DNA Repair (Amst); 2004 Nov; 3(11):1437-46. PubMed ID: 15380099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of recombination in Saccharomyces cerevisiae: testing mitotic and meiotic models by analysis of hypo-rec and hyper-rec mutations.
    Esposito MS
    Symp Soc Exp Biol; 1984; 38():123-59. PubMed ID: 6400218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene conversion between duplicated genetic elements in yeast.
    Jackson JA; Fink GR
    Nature; 1981 Jul; 292(5821):306-11. PubMed ID: 6265790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrachromosomal recombination in Saccharomyces cerevisiae: reciprocal exchange in an inverted repeat and associated gene conversion.
    Willis KK; Klein HL
    Genetics; 1987 Dec; 117(4):633-43. PubMed ID: 2828154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene.
    Aguilera A; Klein HL
    Mol Cell Biol; 1990 Apr; 10(4):1439-51. PubMed ID: 2181275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains.
    Santos-Rosa H; Aguilera A
    Mol Gen Genet; 1994 Oct; 245(2):224-36. PubMed ID: 7816031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae.
    Bai Y; Symington LS
    Genes Dev; 1996 Aug; 10(16):2025-37. PubMed ID: 8769646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic control of spontaneous and UV-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe.
    Osman F; Adriance M; McCready S
    Curr Genet; 2000 Oct; 38(3):113-25. PubMed ID: 11057444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the Saccharomyces cerevisiae CDC1 gene affect double-strand-break-induced intrachromosomal recombination.
    Halbrook J; Hoekstra MF
    Mol Cell Biol; 1994 Dec; 14(12):8037-50. PubMed ID: 7969142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of association between intrachromosomal gene conversion and reciprocal exchange.
    Klein HL
    Nature; 1984 Aug 30-Sep 5; 310(5980):748-53. PubMed ID: 6088989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.