BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1165 related articles for article (PubMed ID: 30449619)

  • 1. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function.
    Shifrut E; Carnevale J; Tobin V; Roth TL; Woo JM; Bui CT; Li PJ; Diolaiti ME; Ashworth A; Marson A
    Cell; 2018 Dec; 175(7):1958-1971.e15. PubMed ID: 30449619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection.
    Kim HS; Lee K; Bae S; Park J; Lee CK; Kim M; Kim E; Kim M; Kim S; Kim C; Kim JS
    J Biol Chem; 2017 Jun; 292(25):10664-10671. PubMed ID: 28446605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes.
    Thomsen EA; Mikkelsen JG
    Methods Mol Biol; 2019; 1961():343-357. PubMed ID: 30912056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR activation and interference screens decode stimulation responses in primary human T cells.
    Schmidt R; Steinhart Z; Layeghi M; Freimer JW; Bueno R; Nguyen VQ; Blaeschke F; Ye CJ; Marson A
    Science; 2022 Feb; 375(6580):eabj4008. PubMed ID: 35113687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens.
    Yim S; Hwang W; Han N; Lee D
    Front Immunol; 2022; 13():884561. PubMed ID: 35651625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide CRISPR-Cas9 viability screen reveals genes involved in TNF-α-induced apoptosis of human umbilical vein endothelial cells.
    Cai M; Li S; Shuai Y; Li J; Tan J; Zeng Q
    J Cell Physiol; 2019 Jun; 234(6):9184-9193. PubMed ID: 30317623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies.
    Roth TL; Li PJ; Blaeschke F; Nies JF; Apathy R; Mowery C; Yu R; Nguyen MLT; Lee Y; Truong A; Hiatt J; Wu D; Nguyen DN; Goodman D; Bluestone JA; Ye CJ; Roybal K; Shifrut E; Marson A
    Cell; 2020 Apr; 181(3):728-744.e21. PubMed ID: 32302591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
    Hashemi A
    Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance.
    Han P; Dai Q; Fan L; Lin H; Zhang X; Li F; Yang X
    Front Immunol; 2019; 10():251. PubMed ID: 30837996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pooled Lentiviral-Delivery Genetic Screens.
    Piccioni F; Younger ST; Root DE
    Curr Protoc Mol Biol; 2018 Jan; 121():32.1.1-32.1.21. PubMed ID: 29337374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GUIDES: sgRNA design for loss-of-function screens.
    Meier JA; Zhang F; Sanjana NE
    Nat Methods; 2017 Aug; 14(9):831-832. PubMed ID: 28858339
    [No Abstract]   [Full Text] [Related]  

  • 13. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
    Zhu S; Li W; Liu J; Chen CH; Liao Q; Xu P; Xu H; Xiao T; Cao Z; Peng J; Yuan P; Brown M; Liu XS; Wei W
    Nat Biotechnol; 2016 Dec; 34(12):1279-1286. PubMed ID: 27798563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening.
    Esposito R; Bosch N; Lanzós A; Polidori T; Pulido-Quetglas C; Johnson R
    Cancer Cell; 2019 Apr; 35(4):545-557. PubMed ID: 30827888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
    Schumann K; Lin S; Boyer E; Simeonov DR; Subramaniam M; Gate RE; Haliburton GE; Ye CJ; Bluestone JA; Doudna JA; Marson A
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10437-42. PubMed ID: 26216948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
    Peng J; Zhou Y; Zhu S; Wei W
    FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.