BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30450053)

  • 1. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts.
    Christoph J; Luther S
    Front Physiol; 2018; 9():1483. PubMed ID: 30450053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking.
    Lebert J; Ravi N; Kensah G; Christoph J
    Front Cardiovasc Med; 2022; 9():787627. PubMed ID: 35686036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts.
    Kappadan V; Telele S; Uzelac I; Fenton F; Parlitz U; Luther S; Christoph J
    Front Physiol; 2020; 11():464. PubMed ID: 32528304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
    Zhang H; Iijima K; Huang J; Walcott GP; Rogers JM
    Biophys J; 2016 Jul; 111(2):438-451. PubMed ID: 27463145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromechanical optical mapping.
    Christoph J; Schröder-Schetelig J; Luther S
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):150-169. PubMed ID: 28947080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based motion correction for optical mapping of cardiac electrical activity.
    Khwaounjoo P; Rutherford SL; Svrcek M; LeGrice IJ; Trew ML; Smaill BH
    Ann Biomed Eng; 2015 May; 43(5):1235-46. PubMed ID: 25384833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical mapping of contracting hearts.
    Kappadan V; Sohi A; Parlitz U; Luther S; Uzelac I; Fenton F; Peters NS; Christoph J; Ng FS
    J Physiol; 2023 Apr; 601(8):1353-1370. PubMed ID: 36866700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion estimation in cardiac fluorescence imaging with scale-space landmarks and optical flow: a comparative study.
    Rodriguez MP; Nygren A
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):774-82. PubMed ID: 25350913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical mapping of cardiac electromechanics in beating in vivo hearts.
    Zhang H; Patton HN; Wood GA; Yan P; Loew LM; Acker CD; Walcott GP; Rogers JM
    Biophys J; 2023 Nov; 122(21):4207-4219. PubMed ID: 37775969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous optical mapping of transmembrane potential and wall motion in isolated, perfused whole hearts.
    Bourgeois EB; Bachtel AD; Huang J; Walcott GP; Rogers JM
    J Biomed Opt; 2011 Sep; 16(9):096020. PubMed ID: 21950934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking markers with missing data by lower rank approximation.
    Muijtjens AM; Roos JM; Arts T; Hasman A; Reneman RS
    J Biomech; 1997 Jan; 30(1):95-8. PubMed ID: 8970931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotor Localization and Phase Mapping of Cardiac Excitation Waves Using Deep Neural Networks.
    Lebert J; Ravi N; Fenton FH; Christoph J
    Front Physiol; 2021; 12():782176. PubMed ID: 34975536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution optical mapping of gastric slow wave propagation.
    Zhang H; Yu H; Walcott GP; Paskaranandavadivel N; Cheng LK; O'Grady G; Rogers JM
    Neurogastroenterol Motil; 2019 Jan; 31(1):e13449. PubMed ID: 30129082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation.
    Song S; Huang Z; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121505. PubMed ID: 24150274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts.
    Tai DC; Caldwell BJ; LeGrice IJ; Hooks DA; Pullan AJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H985-93. PubMed ID: 15130885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards robust 3D visual tracking for motion compensation in beating heart surgery.
    Richa R; Bó AP; Poignet P
    Med Image Anal; 2011 Jun; 15(3):302-15. PubMed ID: 21277821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiducial marker and marker-less soft-tissue detection using fast MV fluoroscopy on a new generation EPID: investigating the influence of pulsing artifacts and artifact suppression techniques.
    Poels K; Verellen D; Van de Vondel I; El Mazghari R; Depuydt T; De Ridder M
    Med Phys; 2014 Oct; 41(10):101911. PubMed ID: 25281963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of motion artifact in cardiac optical mapping using image registration.
    Rohde GK; Dawant BM; Lin SF
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):338-41. PubMed ID: 15709673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes.
    Woodhams LG; Guo J; Schuftan D; Boyle JJ; Pryse KM; Elson EL; Huebsch N; Genin GM
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2212949120. PubMed ID: 37695908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.