BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30450181)

  • 1. Cu
    Rakshit A; Khatua K; Shanbhag V; Comba P; Datta A
    Chem Sci; 2018 Nov; 9(41):7916-7930. PubMed ID: 30450181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study.
    Simunkova M; Barbierikova Z; Jomova K; Hudecova L; Lauro P; Alwasel SH; Alhazza I; Rhodes CJ; Valko M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.
    Robert A; Liu Y; Nguyen M; Meunier B
    Acc Chem Res; 2015 May; 48(5):1332-9. PubMed ID: 25946460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer Pro-oxidant Therapy Through Copper Redox Cycling:
    Rieber M
    Curr Pharm Des; 2020; 26(35):4461-4466. PubMed ID: 32600223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Ions in Alzheimer's Disease: A Key Role or Not?
    Liu Y; Nguyen M; Robert A; Meunier B
    Acc Chem Res; 2019 Jul; 52(7):2026-2035. PubMed ID: 31274278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease.
    Nguyen M; Robert A; Sournia-Saquet A; Vendier L; Meunier B
    Chemistry; 2014 May; 20(22):6771-85. PubMed ID: 24797103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mishandling of copper by albumin: role in redox-cycling and oxidative stress in preeclampsia plasma.
    Kagan VE; Tyurin VA; Borisenko GG; Fabisiak JP; Hubel CA; Ness RB; Gandley R; McLaughlin MK; Roberts JM
    Hypertens Pregnancy; 2001; 20(3):221-41. PubMed ID: 12044332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-Driven Deselenization: A Strategy for Selective Conversion of Copper Ion to Nanozyme and Its Implication for Copper-Related Disorders.
    Chalana A; Karri R; Das R; Kumar B; Rai RK; Saxena H; Gupta A; Banerjee M; Jha KK; Roy G
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4766-4776. PubMed ID: 30644707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools.
    Pezacki AT; Matier CD; Gu X; Kummelstedt E; Bond SE; Torrente L; Jordan-Sciutto KL; DeNicola GM; Su TA; Brady DC; Chang CJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2202736119. PubMed ID: 36252013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.
    Delangle P; Mintz E
    Dalton Trans; 2012 Jun; 41(21):6359-70. PubMed ID: 22327203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective inhibition of copper-catalyzed production of hydroxyl radicals by deferiprone.
    Timoshnikov VA; Kobzeva T; Selyutina OY; Polyakov NE; Kontoghiorghes GJ
    J Biol Inorg Chem; 2019 May; 24(3):331-341. PubMed ID: 30868263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Effects of Histidine and Histidinamide versus Cysteine and Cysteinamide on Copper Ion-Induced Oxidative Stress and Cytotoxicity in HaCaT Keratinocytes.
    Ha JW; Choi JY; Boo YC
    Antioxidants (Basel); 2023 Mar; 12(4):. PubMed ID: 37107176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro.
    Opländer C; Rösner J; Gombert A; Brodski A; Suvorava T; Grotheer V; van Faassen EE; Kröncke KD; Kojda G; Windolf J; Suschek CV
    Nitric Oxide; 2013 Nov; 35():152-64. PubMed ID: 24140456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in metal-induced oxidative stress and human disease.
    Jomova K; Valko M
    Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dose-dependent effect of copper-chelating agents on the kinetics of peroxidation of low-density lipoprotein (LDL).
    Pinchuk I; Gal S; Lichtenberg D
    Free Radic Res; 2001 Apr; 34(4):349-62. PubMed ID: 11328672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer's disease.
    Cooper GJ
    Drugs; 2011 Jul; 71(10):1281-320. PubMed ID: 21770477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper toxicity, oxidative stress, and antioxidant nutrients.
    Gaetke LM; Chow CK
    Toxicology; 2003 Jul; 189(1-2):147-63. PubMed ID: 12821289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-function relationship within water-soluble Peptoid Chelators for Cu
    Ghosh P; Rozenberg I; Maayan G
    J Inorg Biochem; 2021 Apr; 217():111388. PubMed ID: 33618230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Peptoid-Chelator Selective to Cu
    Behar AE; Maayan G
    Antioxidants (Basel); 2023 Nov; 12(12):. PubMed ID: 38136151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Cu(I)-selective chelators based on a bis(phosphorothioyl)amide scaffold.
    Amir A; Ezra A; Shimon LJ; Fischer B
    Inorg Chem; 2014 Aug; 53(15):7901-8. PubMed ID: 25033439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.