These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30450363)

  • 1. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients.
    Selb J; Wu KC; Sutin J; Lin PI; Farzam P; Bechek S; Shenoy A; Patel AB; Boas DA; Franceschini MA; Rosenthal ES
    Neurophotonics; 2018 Oct; 5(4):045005. PubMed ID: 30450363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic autoregulation of cerebral blood flow measured non-invasively with fast diffuse correlation spectroscopy.
    Parthasarathy AB; Gannon KP; Baker WB; Favilla CG; Balu R; Kasner SE; Yodh AG; Detre JA; Mullen MT
    J Cereb Blood Flow Metab; 2018 Feb; 38(2):230-240. PubMed ID: 29231781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults.
    Kim MN; Durduran T; Frangos S; Edlow BL; Buckley EM; Moss HE; Zhou C; Yu G; Choe R; Maloney-Wilensky E; Wolf RL; Grady MS; Greenberg JH; Levine JM; Yodh AG; Detre JA; Kofke WA
    Neurocrit Care; 2010 Apr; 12(2):173-80. PubMed ID: 19908166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient.
    Busch DR; Baker WB; Mavroudis CD; Ko TS; Lynch JM; McCarthy AL; DuPont-Thibodeau G; Buckley EM; Jacobwitz M; Boorady TW; Mensah-Brown K; Connelly JT; Yodh AG; Kilbaugh TJ; Licht DJ
    Pediatr Res; 2020 Dec; 88(6):925-933. PubMed ID: 32172282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy.
    Busch DR; Balu R; Baker WB; Guo W; He L; Diop M; Milej D; Kavuri V; Amendolia O; St Lawrence K; Yodh AG; Kofke WA
    Neurocrit Care; 2019 Feb; 30(1):72-80. PubMed ID: 30030667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury.
    Baker WB; Balu R; He L; Kavuri VC; Busch DR; Amendolia O; Quattrone F; Frangos S; Maloney-Wilensky E; Abramson K; Mahanna Gabrielli E; Yodh AG; Andrew Kofke W
    J Cereb Blood Flow Metab; 2019 Aug; 39(8):1469-1485. PubMed ID: 31088234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets].
    Huang HJ; Shao XM; Cheng GQ
    Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the Upper and Lower Limits of Cerebral Autoregulation With Cerebral Oximetry Autoregulation Curves: A Case Series.
    Rivera-Lara L; Zorrilla-Vaca A; Healy RJ; Ziai W; Hogue C; Geocadin R; Radzik B; Palmisano C; Mirski MA
    Crit Care Med; 2018 May; 46(5):e473-e477. PubMed ID: 29419556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics.
    Pham T; Fernandez C; Blaney G; Tgavalekos K; Sassaroli A; Cai X; Bibu S; Kornbluth J; Fantini S
    Front Neurol; 2021; 12():745987. PubMed ID: 34867729
    [No Abstract]   [Full Text] [Related]  

  • 10. Cerebral Autoregulation Monitoring with Ultrasound-Tagged Near-Infrared Spectroscopy in Cardiac Surgery Patients.
    Hori D; Hogue CW; Shah A; Brown C; Neufeld KJ; Conte JV; Price J; Sciortino C; Max L; Laflam A; Adachi H; Cameron DE; Mandal K
    Anesth Analg; 2015 Nov; 121(5):1187-93. PubMed ID: 26334746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral Autoregulation in the Prediction of Delayed Cerebral Ischemia and Clinical Outcome in Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients.
    Gaasch M; Schiefecker AJ; Kofler M; Beer R; Rass V; Pfausler B; Thomé C; Schmutzhard E; Helbok R
    Crit Care Med; 2018 May; 46(5):774-780. PubMed ID: 29394184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients.
    Rivera-Lara L; Geocadin R; Zorrilla-Vaca A; Healy R; Radzik BR; Palmisano C; Mirski M; Ziai WC; Hogue C
    Neurocrit Care; 2017 Dec; 27(3):362-369. PubMed ID: 28664392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Mean Arterial Pressure in Acutely Comatose Patients Using Cerebral Autoregulation Multimodal Monitoring With Near-Infrared Spectroscopy.
    Rivera-Lara L; Geocadin R; Zorrilla-Vaca A; Healy RJ; Radzik BR; Palmisano C; Mirski M; White MA; Suarez J; Brown C; Hogue CW; Ziai W
    Crit Care Med; 2019 Oct; 47(10):1409-1415. PubMed ID: 31356469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.
    Fantini S; Sassaroli A; Tgavalekos KT; Kornbluth J
    Neurophotonics; 2016 Jul; 3(3):031411. PubMed ID: 27403447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous cerebral autoregulation monitoring by improved cross-correlation analysis: comparison with the cuff deflation test.
    Christ M; Noack F; Schroeder T; Hagmueller A; Koch R; May SA; Morgenstern U; Ragaller M; Steinmeier R
    Intensive Care Med; 2007 Feb; 33(2):246-54. PubMed ID: 17143638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy.
    Yang J; Ruesch A; Kainerstorfer JM
    Neurophotonics; 2023 Jan; 10(1):015002. PubMed ID: 36699625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Non-invasive Assessment of Cerebral Hemodynamics With Diffuse Optical Spectroscopies in a Neuro Intensive Care Unit: An Observational Case Study.
    Forti RM; Katsurayama M; Menko J; Valler L; Quiroga A; Falcão ALE; Li LM; Mesquita RC
    Front Med (Lausanne); 2020; 7():147. PubMed ID: 32411712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative Cerebral Hemodynamic Monitoring during Carotid Endarterectomy via Diffuse Correlation Spectroscopy and Near-Infrared Spectroscopy.
    Kaya K; Zavriyev AI; Orihuela-Espina F; Simon MV; LaMuraglia GM; Pierce ET; Franceschini MA; Sunwoo J
    Brain Sci; 2022 Aug; 12(8):. PubMed ID: 36009088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Near-Infrared Spectroscopy Derived Cerebral Autoregulation in Neonates: From Research Tool Toward Bedside Multimodal Monitoring.
    Thewissen L; Caicedo A; Lemmers P; Van Bel F; Van Huffel S; Naulaers G
    Front Pediatr; 2018; 6():117. PubMed ID: 29868521
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.