These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30450493)

  • 1. A Scalable Optoelectronic Neural Probe Architecture With Self-Diagnostic Capability.
    Zhao H; Soltan A; Maaskant P; Dong N; Sun X; Degenaar P
    IEEE Trans Circuits Syst I Regul Pap; 2018 Aug; 65(8):2431-2442. PubMed ID: 30450493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opto-electro-thermal optimization of photonic probes for optogenetic neural stimulation.
    Dong N; Berlinguer-Palmini R; Soltan A; Ponon N; O'Neil A; Travelyan A; Maaskant P; Degenaar P; Sun X
    J Biophotonics; 2018 Oct; 11(10):e201700358. PubMed ID: 29603666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application.
    Kwon KY; Lee HM; Ghovanloo M; Weber A; Li W
    Front Syst Neurosci; 2015; 9():69. PubMed ID: 25999823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of An Implantable Optrode for Optogenetic Stimulation].
    Yue S; Yuan M; Zhang Y; Wang X; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and modification of implantable optrode arrays for
    Wang L; Huang K; Zhong C; Wang L; Lu Y
    Biophys Rep; 2018; 4(2):82-93. PubMed ID: 29756008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LED Optrode with Integrated Temperature Sensing for Optogenetics.
    Goncalves SB; Palha JM; Fernandes HC; Souto MR; Pimenta S; Dong T; Yang Z; Ribeiro JF; Correia JH
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanofabricated optoelectronic probe for manipulating and recording neural dynamics.
    Li B; Lee K; Masmanidis SC; Li M
    J Neural Eng; 2018 Aug; 15(4):046008. PubMed ID: 29629879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Probe Neural Interface ASIC for Combined Electrical Recording and Optogenetic Stimulation.
    Ramezani R; Liu Y; Dehkhoda F; Soltan A; Haci D; Zhao H; Firfilionis D; Hazra A; Cunningham MO; Jackson A; Constandinou TG; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):576-588. PubMed ID: 29877821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites.
    Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H
    J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique.
    Davey CJ; Argyros A; Fleming SC; Solomon SG
    Appl Opt; 2015 Dec; 54(34):10068-72. PubMed ID: 26836662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics.
    Lu Y; Li Y; Pan J; Wei P; Liu N; Wu B; Cheng J; Lu C; Wang L
    Biomaterials; 2012 Jan; 33(2):378-94. PubMed ID: 22018384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous 3D optrode with variable spatial resolution for optogenetic stimulation and electrophysiological recording.
    Ayub S; Barz F; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1762-1765. PubMed ID: 28268668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures.
    Tamura K; Ohashi Y; Tsubota T; Takeuchi D; Hirabayashi T; Yaguchi M; Matsuyama M; Sekine T; Miyashita Y
    J Neurosci Methods; 2012 Oct; 211(1):49-57. PubMed ID: 22971353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wireless implantable switched-capacitor based optogenetic stimulating system.
    Lee HM; Kwon KY; Li W; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid optoelectronic buffer using CMOS memory and optical interfaces for 10-Gbit/s asynchronous variable-length optical packets.
    Nakahara T; Takenouchi H; Urata R; Yamazaki H; Takahashi R
    Opt Express; 2010 Sep; 18(20):20565-71. PubMed ID: 20940951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array.
    Boutte RW; Blair S
    Biomed Microdevices; 2016 Dec; 18(6):115. PubMed ID: 27943003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability.
    Tokuda T; Takeuchi Y; Sagawa Y; Noda T; Sasagawa K; Nishida K; Fujikado T; Ohta J
    IEEE Trans Biomed Circuits Syst; 2010 Dec; 4(6):445-53. PubMed ID: 23853382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.